Skip to main content
Log in

Radiative exciton recombination dynamics in QD-tagged polystyrene microspheres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fluorescent polystyrene microspheres are prepared by the incorporation of fluorescent CdSe/CdS core/shell semiconductor nanocrystals (quantum dots, QDs) using the emulsification/solvent evaporation method. The radiative exciton recombination dynamics is investigated by nanosecond time-resolved fluorescence spectroscopy at ambient conditions. The time constants of fast and slow fluorescence decay in QDs, dispersed in toluene, were 3.5 and 17.8 ns, respectively. For the QD-tagged microspheres, the time constants of fast and slow processes were ~2–3 and ~11–12 ns, respectively, and did not depend significantly on the QD-content of the microspheres. The fast decay component could be attributed to the recombination of delocalized exciton in the internal core states, and the slow component was attributed to the localized exciton in the surface states. It was found that the ratio of amplitudes of the fast and slow processes also changed after incorporation of QDs in microspheres. The observed differences in fluorescence decay between non-entrapped QDs and QD-tagged microspheres were probably due to energy transfer between the nanocrystals, which were in close proximity inside the microspheres. The obtained fluorescent QD-tagged microspheres are characterized by the other methods as well, which makes them of value for various applications as optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, Sundaresan G, Wu A, Gambhir S, Weiss S (2005) Science 307:538

    Article  CAS  Google Scholar 

  2. Pinaud F, Michalet X, Bentolila L, Tsay J, Doosel S, Li J, Iyer G, Weiss S (2006) Biomaterials 27:1679

    Article  CAS  Google Scholar 

  3. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian A (2007) Biomaterials 28:4717

    Article  CAS  Google Scholar 

  4. Chan W, Maxwell D, Gao X, Bailey R, Han M, Nie S (2002) Curr Opin Biotechnol 13:40

    Article  CAS  Google Scholar 

  5. Hezinger A, Teßmar J, Gopferich A (2008) Eur J Pharm Biopharm 68:138

    Article  CAS  Google Scholar 

  6. Han M, Gao X, Su J, Nie S (2001) Nature Biotechnol 19:631

    Article  CAS  Google Scholar 

  7. Ma Q, Wang X, Li Y, Shi Y, Su X (2007) Talanta 72:1446

    Article  CAS  Google Scholar 

  8. Xu H, Sha M, Wong E, Uphoff J, Xu Y, Treadway J, Truong A, O’Bren E, Asquith S, Stubbins M, Spurr N, Lai E, Mahoney W (2003) Nucleic Acids Res 31(8):e43

    Article  Google Scholar 

  9. Stsiapura V, Sukhanova A, Artemyev M, Pluot M, Cohen J, Baranov A, Oleinikov V, Nabiev I (2004) Anal Biochem 334:257

    Article  CAS  Google Scholar 

  10. Bradley M, Bruno N, Vincent B (2005) Langmuir 21:2750

    Article  CAS  Google Scholar 

  11. Gao X, Nie S (2004) Anal Chem 76:2406

    Article  CAS  Google Scholar 

  12. Wang D, Rogach A, Caruso F (2002) Nano Lett 2:857

    Article  CAS  Google Scholar 

  13. Graponik N, Radtchenko I, Gerstenberger M, Fedutik Y, Sukhorukov G, Rogach A (2003) Nano Lett 3:369

    Article  Google Scholar 

  14. Müller F, Götzinger S, Gaponik N, Weller H, Mlynek J, Benson O (2004) J Phys Chem B 108:14527

    Article  Google Scholar 

  15. O’Brien P, Cummins S, Darcy D, Dearden A, Masala O, Pickett N, Ryley S (2003) Chem Commun 2532

  16. Yang X, Zhang Y (2004) Langmuir 20:6071

    Article  CAS  Google Scholar 

  17. Sheng W, Kim S, Lee J, Kim S, Jensen K, Bawendi M (2006) Langmuir 22:3782

    Article  CAS  Google Scholar 

  18. Yin W, Liu H, Yates M, Du H, Jiang F, Guo L, Krauss T (2007) Chem Mater 19:2930

    Article  CAS  Google Scholar 

  19. Wang C, Wang L, Yang W (2009) J Colloid Interface Sci 333:749

    Article  CAS  Google Scholar 

  20. Ma Q, Song T, Yuan P, Wang C, Su X (2008) Colloids Surf B 64:248

    Article  CAS  Google Scholar 

  21. Sun L, Yu X, Sun M, Wang H, Xu S, Dixon J, Wang Y, Li Y, Yang Q, Xu X (2011) J Colloid Interface Sci 358:73

    Article  CAS  Google Scholar 

  22. Zhao Y, Chen W, Peng C, Liu L, Xue F, Zhu S, Kuang H, Xu C (2010) J Colloid Interface Sci 352:337

    Article  CAS  Google Scholar 

  23. Wu F, Zhang J, Kho R, Mehra R (2000) Chem Phys Lett 330:237

    Article  CAS  Google Scholar 

  24. Shu G, Lee W, Shu I, Shen J, Lin C, Chang W, Ruaan R, Chou W (2005) IEEE Trans Nanotechnol 4:5–10

    Article  Google Scholar 

  25. Schlegel G, Bohnenberger J, Potapova I, Mews A (2002) Phys Rev Lett 88:137401

    Article  Google Scholar 

  26. Javier A, Magana D, Jennings T, Strouse G (2003) Appl Phys Lett 83:1423

    Article  CAS  Google Scholar 

  27. Dahan M, Laurence T, Pinaud F, Chemla D, Alivisatos A, Sauer M, Weiss S (2001) Optics Lett 26:825–827

    Article  CAS  Google Scholar 

  28. Yordanov G, Yoshimura H, Dushkin C (2008) Colloid Polymer Sci 286:1097

    Article  CAS  Google Scholar 

  29. Yordanov G, Gicheva G, Dushkin C (2009) Mater Chem Phys 113:507

    Article  CAS  Google Scholar 

  30. Schliehe C, Schliehe C, Thiry M, Tromsdorf U, Hentschel J, Weller H, Groettrup M (2011) J Control Release. doi:10.1016/j.jconrel.2011.01.005 (in press)

  31. Kim J, Cho K, Tran T, Nurunnabi M, Moon T, Hong S, Lee Y (2011) J Colloid Interf Sci 353:363

    Article  CAS  Google Scholar 

  32. Zhang B, Liang X, Hao L, Cheng J, Gong X, Liu X, Ma G, Chang J (2009) J Photochem Photobiol B 94:45

    Article  CAS  Google Scholar 

  33. Yuan C, Chou W, Chuu D, Chang W, Lin H, Ruaan R (2006) J Med Biol Eng 26:131

    CAS  Google Scholar 

  34. Kagan C, Murray C, Nirmal M, Bawendi M (1996) Phys Rev Lett 76:1517

    Article  CAS  Google Scholar 

  35. Kagan C, Murray C, Bawendi M (1996) Phys Rev B 54:8633

    Article  CAS  Google Scholar 

  36. Lunz M, Bradley A (2010) Phys Rev B 81:205316

    Article  Google Scholar 

  37. Kim D, Okahara S, Nakayama M (2008) Phys Rev B 78:153301

    Article  Google Scholar 

  38. Achermann M, Petruska M, Crooker S, Klimov V (2003) J Phys Chem B 107:13782

    Article  CAS  Google Scholar 

  39. Wuister S, Koole R, de Mello Donega R, Meijerink A (2005) J Phys Chem B 109:5504

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this work to the memory of Dr. Ceco Dushkin, a coauthor of this article, who largely supported this research. The authors thank COST Action D43 (grant COST-STSM-D43-03506) and projects VUH-09/05 and UNION (DCVP 02/2 – 2009) of the National Science Fund of Bulgaria. The authors also thank Andrea Petrella, Politecnico di Bari, for the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Yordanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gicheva, G., Panniello, AM., Corricelli, M. et al. Radiative exciton recombination dynamics in QD-tagged polystyrene microspheres. J Mater Sci 47, 374–381 (2012). https://doi.org/10.1007/s10853-011-5808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5808-x

Keywords

Navigation