Skip to main content
Log in

Spark plasma sintering synthesis and mechanical spectroscopy of the ω-Al0.7Cu0.2Fe0.1 phase

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Starting from a mixture of Al–Cu–Fe quasicrystalline (QC) particles and Al powder, a fully dense and almost Al–Cu–Fe ω single-phase alloy was produced by spark plasma sintering. This technique allows synthesising large samples with sizes suitable for mechanical spectroscopy experiments. Mechanical spectroscopy was selected because it is a relevant tool for detecting the presence of structural defects at both nano and microscopic scales. Young’s moduli were measured in the 15 kHz range as a function of temperature by the resonant frequency method. Young’s moduli behave similarly for typical metals and exhibit values that are comparable to those of the Al–Cu–Fe QC phase. The damping coefficient Q −1 was determined at various temperatures between room temperature and 840 K over a large frequency range, i.e. between 10−3 and 10 Hz. The results suggest that solid friction effects do occur. In addition, a relaxation peak is observed in the intermediate temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laplanche G, Joulain A, Bonneville J, Gauthier-Brunet V, Dubois S, El Kabir T (2010) J Mat Res 25:957

    Article  CAS  Google Scholar 

  2. Bonneville J, Laplanche G, Joulain A, Gauthier-Brunet V, Dubois S (2010) J Phys 240:012013

    Article  Google Scholar 

  3. Tsaï AP, Aoki K, Akihisa I, Masumoto T (1993) J Mater Res 8:5

    Article  Google Scholar 

  4. Taupin V, Berbenni S, Fressengeas C, Bouaziz O (2010) Acta Mat 58:5232

    Article  Google Scholar 

  5. Bonneville J, Caillard D, Guyot P (2008). In: Hirth JP (ed) Dislocations in Solids, vol 14. Elsevier, North-Holland, pp 251–332

  6. Bresson L, Gratias D (1993) J Non-Cryst Solids 153–154:468

    Article  Google Scholar 

  7. Huttunen-Saarivirta E (2004) J Alloys Comp 363:154

    Article  Google Scholar 

  8. Giacometti E, Baluc N, Bonneville J (1999) Phil Mag Lett 79:1

    Article  CAS  Google Scholar 

  9. Laplanche G, Joulain A, Bonneville J, Gauthier-Brunet V, Dubois S to be published

  10. Giacometti E, Fikar J, Baluc N, Bonneville J (2002) Phil Mag Lett 82:183

    Article  CAS  Google Scholar 

  11. Mazot P, de Fouquet J, Woirgard J, Pautrot JP (1992) J Phys III:751

    Google Scholar 

  12. Spinner S, Reichard TW, Tefft WE (1960) J Res ASTM 64A:147

    Google Scholar 

  13. Spinner S, Tefft WE (1961) J Res ASTM 65A:167

    Google Scholar 

  14. Nowick AS, Berry BS (1972) Anelastic relaxation in solids. Academic Press, New York

    Google Scholar 

  15. Woirgard J, Mazot P, Rivière A (1981) J Phys 10:1135

    Google Scholar 

  16. Bown MG, Brown PJ (1956) Acta Crystallogr A 9:911

    Article  CAS  Google Scholar 

  17. Laplanche G, Joulain A, Bonneville J, Gauthier-Brunet V, Dubois S (2010) Mat Sci Eng A 527:4515

    Article  Google Scholar 

  18. Comte C, von Stebut J (2002) Surf Coat Technol 154:42

    Article  CAS  Google Scholar 

  19. Tang F, Gnäupel-Herold T, Prask H, Anderson IE (2005) Mat Sci Eng A 399:99

    Article  Google Scholar 

  20. Tang F, Meeks H, Spowart JE, Gnaeupel-Herold T, Prask H, Anderson IE (2004) Mat Sci Eng A 386:194

    Google Scholar 

  21. Molénat G, Durand L, Galy J, Couret A (2010) J Metall 2010:1

    Article  Google Scholar 

  22. Yang C, Jin SZ, Liang BY, Jia SS (2009) J Eur Ceram Soc 29:181

    Article  CAS  Google Scholar 

  23. Laplanche G, Joulain A, Bonneville J, Schaller R, El Kabir T (2010) J Alloys Comp 493:453

    Article  CAS  Google Scholar 

  24. Gadaud P (2006) Int J Mater Prod Technol 26:326

    CAS  Google Scholar 

  25. Gadaud P, Pautrot S (2011) In: The 16th international conference on internal friction and mechanical spectroscopy (ICIFMS 16) held in Lausanne on July 3–8, 2011

  26. Gadaud P, Pautrot S (2004) Mat Sci Eng A 370:422

    Article  Google Scholar 

  27. Tang F, Anderson IE, Gnaupel-Herold T, Prask H (2004) Mat Sci Eng A 383:362

    Article  Google Scholar 

  28. Tanaka K, Mitarai Y, Koiwa M (1996) Phil Mag A 73:1715

    Article  CAS  Google Scholar 

  29. Vanderwal JJ, Zhao P, Walton D (1992) Phys Rev B 46:501

    Article  CAS  Google Scholar 

  30. Köster U, Liu W, Liebertz H, Michel M (1993) J Non-Cryst Solids 153–154:446

    Article  Google Scholar 

  31. Schoeck G, Bisogni E, Shyne J (1964) Acta Metall 12:1466

    Article  CAS  Google Scholar 

  32. Rivière A, Gadaud P, Woirgard J (1993) In: Bhagat RB (ed) Damping of multiphase inorganic materials. ASM International, Materials Park

  33. Pautrot S, Mazot P (1993) Revue de Métall 90:1665

    CAS  Google Scholar 

  34. Numakura H, Kurita N, Koiwa M, Gadaud P (1999) Phil Mag 79:943

    Article  CAS  Google Scholar 

  35. Phragmen G (1950) J Inst Met 77:489

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bonneville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laplanche, G., Gadaud, P., Bonneville, J. et al. Spark plasma sintering synthesis and mechanical spectroscopy of the ω-Al0.7Cu0.2Fe0.1 phase. J Mater Sci 47, 169–175 (2012). https://doi.org/10.1007/s10853-011-5784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5784-1

Keywords

Navigation