Skip to main content

Advertisement

Log in

Formability of thermally cured and of nanoclay-reinforced polyelectrolyte films on NiTi substrates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present study characterizes the formability of thin polyelectrolyte films which were modified by curing and alternatively reinforced with nano-sized clay-platelets. To investigate the suitability of modified polyelectrolyte coatings for biomedical applications, films were applied on both the polycrystalline and single crystal NiTi 50.9 at.% substrates and mechanically deformed in simulated body fluid (Hank’s solution) under cyclic tensile loading. In situ electron backscatter diffraction, in situ confocal laser scanning microscopy, photoelastic-modulated infrared reflection absorption spectroscopy, and ellipsometry measurements were employed to study defect formation. Based on observations from the substrates and films, conducted before and after to mechanical testing, defect formation during tensile cycling was related to substrate and film characteristics. Defects emerged particularly in unmodified and cured polyelectrolyte films on both polycrystalline and single crystalline substrates within areas of pronounced topographic changes. In contrast, the nanoclay-modified coatings remained defect free, indicating a remarkable improvement of formability, which can be related to the reinforcing clay-platelets within the polyelectrolyte matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen MF, Yang XJ, Liu Y, Zhu SL, Cui ZD, Man HC (2003) Surf Coat Technol 173:229–234

    Article  CAS  Google Scholar 

  2. Kujala S, Pajala A, Kallioinen M, Pramila A, Tuukkanen J, Ryhänen J (2004) Biomaterials 25:353–358

    Article  CAS  Google Scholar 

  3. Duerig TW, Wholey M (2002) Minim Invasive Ther Allied Technol 11:173–178

    Article  Google Scholar 

  4. Feninat FE, Laroche G, Fiset M, Mantovani D (2002) Adv Eng Mater 4:91–104

    Article  Google Scholar 

  5. Pelton AR, Stöckel D, Duerig TW (2000) Mater Sci Forum 327–328:63–70

    Article  Google Scholar 

  6. Sunderman FW (1977) Ann Clin Lab Sci 7:377–398

    CAS  Google Scholar 

  7. Morgan NB (2004) Mater Sci Eng 378:16–23

    Article  Google Scholar 

  8. Assad M, Chernyshov AV, Jarzem P, Leroux MA, Coillard C, Charette S, Rivard CH (2003) J Biomed Mater Res B Appl Biomater 64B:121–129

    Article  CAS  Google Scholar 

  9. Bishara SE, Barrett RD, Selim MI (1993) Am J Orthod Dentofac Orthop 103:115–119

    Article  CAS  Google Scholar 

  10. Carroll WM, Kelly MJ (2003) J Biomed Mater Res B 67B:1123–1130

    Article  Google Scholar 

  11. Cissé O, Savadogo O, Wu M, Yahia LH (2002) J Biomed Mater Res 61:339–345

    Article  Google Scholar 

  12. Venugopalan R, Trépanier C (2000) Minim Invasive Ther Allied Technol 9:67–74

    Article  Google Scholar 

  13. Riepe G, Heintz C, Kaiser E, Chakfe N, Morlock M, Delling M, Imig H (2002) Eur J Vasc Endovasc Surg 24:117–122

    Article  CAS  Google Scholar 

  14. Pohl M, Glogowski T, Kühn S, Hessing C, Unterumsberger F (2008) Mater Sci Eng 481–482:123–126

    Google Scholar 

  15. Shabalovskaya SA, Tian H, Anderegg JW, Schryvers DU, Carroll WU, Van Humbeeck J (2009) Biomaterials 30:468–477

    Article  CAS  Google Scholar 

  16. Cheng Y, Zheng YF (2006) Mater Sci Eng 438–440:1146–1149

    Google Scholar 

  17. Sui JH, Cai W (2006) Nucl Instrum Methods Phys Res 251:402–406

    Article  CAS  Google Scholar 

  18. Xu JL, Liu F, Wang FP, Yu DZ, Zhao LC (2009) Curr Appl Phys 9:663–666

    Article  Google Scholar 

  19. Heßing C, Frenzel J, Pohl M, Shabalovskaya S (2008) Mater Sci Eng 486:461–469

    Article  Google Scholar 

  20. Frotscher M, Neuking K, Böckmann R, Wolff KD, Eggeler G (2008) Mater Sci Eng 481–482:160–165

    Google Scholar 

  21. Lackmann J, Regenspurger R, Maxisch M, Grundmeier G, Maier HJ (2010) J Mech Behav Biomed Mater 3:436–445

    Article  CAS  Google Scholar 

  22. Decher G, Hong JD, Schmitt J (1992) Thin Solid Films 210–211:831–835

    Article  Google Scholar 

  23. Decher G (1997) Science 277:1232–1237

    Article  CAS  Google Scholar 

  24. Hammond PT (2004) Adv Mater 16:1271–1293

    Article  CAS  Google Scholar 

  25. Jaber JA, Schlenoff JB (2006) Curr Opin Coll Interface Sci 11:324–329

    Article  CAS  Google Scholar 

  26. Dai J, Sullivan DM, Bruening ML (2000) Ind Eng Chem Res 39:3528–3535

    Article  CAS  Google Scholar 

  27. Antipov AA, Sukhorukov GB, Möhwald H (2003) Langmuir 19:2444–2448

    Article  CAS  Google Scholar 

  28. Shiratori SS, Rubner MF (2000) Macromolecules 33:4213–4219

    Article  CAS  Google Scholar 

  29. Lackmann J, Niendorf T, Maxisch M, Grundmeier G, Maier HJ (2011) Mater Charact 62:298–303

    Article  CAS  Google Scholar 

  30. Richert L, Engler AJ, Discher DE, Picart C (2004) Biomacromolecules 5:1908–1916

    Article  CAS  Google Scholar 

  31. Wang Z, Pinnavaia TJ (1998) Chem Mater 10:3769–3771

    Article  CAS  Google Scholar 

  32. Heidarian M, Shishesaz MR, Kassiriha SM, Nematollahi M (2010) Prog Org Coat 68:180–188

    Article  CAS  Google Scholar 

  33. Sehitoglu H, Hamilton R, Canadinc D, Zhang XY, Gall K, Karaman I, Chumlyakov Y, Maier HJ (2003) Metall Mater Trans A 34:5–13

    Article  Google Scholar 

  34. Gall K, Maier HJ (2002) Acta Mater 50:4643–4657

    Article  CAS  Google Scholar 

  35. Liu Y, Yang H (1999) Mater Sci Eng A 260:240–245

    Article  Google Scholar 

  36. Harris JJ, DeRose PM, Bruening ML (1999) J Am Chem Soc 121:1978–1979

    Article  CAS  Google Scholar 

  37. Yamagata Y, Shiratori S (2003) Thin Solid Films 438–439:238–242

    Article  Google Scholar 

  38. Choubey A, Balasubramaniam R, Basu B (2004) J Alloys Compd 381:288–294

    Article  CAS  Google Scholar 

  39. Nolte AJ, Rubner MF, Cohen RE (2005) Macromolecules 38:5367–5370

    Article  CAS  Google Scholar 

  40. Heuvingh J, Zappa M, Fery A (2005) Langmuir 21:3165–3171

    Article  CAS  Google Scholar 

  41. Tanchak OM, Barrett CJ (2004) Chem Mater 16:2734–2739

    Article  CAS  Google Scholar 

  42. Günzler H, Gremlich HU (2003) IR-Spektroskopie, 4th edn. Wiley-VCH, Weinheim

    Google Scholar 

  43. Titz T, Hörzenberger F, Van den Bergh K, Grundmeier G (2010) Corros Sci 52:369–377

    Article  CAS  Google Scholar 

  44. Özkaya B, Özcan Ö, Thissen P, Grundmeier G (2010) Langmuir 26(11):8155–8160

    Article  Google Scholar 

  45. Tirry W, Schryvers D (2008) Mater Sci Eng A 481–482:420–425

    Google Scholar 

  46. Daly S, Ravichandran G, Bhattacharya K (2007) Acta Mater 55:3593–3600

    Article  CAS  Google Scholar 

  47. Dai X, Zhang Y, Guan Y, Yang S, Xu J (2005) Thin Solid Films 474:159–164

    Article  CAS  Google Scholar 

  48. Feng P, Sun QP (2006) J Mech Phys Solids 54:1568–1603

    Article  CAS  Google Scholar 

  49. Maciejewski G, Stupkiewicz S, Petryk H (2005) . Arch Mech 57(4):277–297

    CAS  Google Scholar 

  50. Messner C, Reisner G, Sun QP, Werner E (2000) Comput Mater Sci 19:313–319

    Article  CAS  Google Scholar 

  51. Liu DZ, Kikuchi T, Kajiwara S, Shinya N (1999) J Intell Mater Syst Struct 10:569–574

    Article  CAS  Google Scholar 

  52. Liu DZ, Kajiwara S, Kikuchi T, Shinya N (2002) Mater Sci Forums 394–395:193–200

    Article  Google Scholar 

  53. Yang Z, Fang H, Wang J, Li C, Zheng Y (1995) Phys Rev B 52:7879–7882

    Article  CAS  Google Scholar 

  54. Pavoor PV, Bellare A, Strom A, Yang D, Cohen RE (2004) Macromolecules 37:4865–4871

    Article  CAS  Google Scholar 

  55. Thompson MT, Berg MC, Tobias IS, Rubner MF, Van Vliet KJ (2005) Biomaterials 26:6836–6845

    Article  CAS  Google Scholar 

  56. Decher G, Lvov Y, Schmitt J (1994) Thin Solid Films 244:772–774

    Article  CAS  Google Scholar 

  57. Nolte AJ, Treat ND, Cohen RE, Rubner MF (2008) Macromolecules 41:5793–5798

    Article  CAS  Google Scholar 

  58. Dubas ST, Schlenoff JB (2001) Langmuir 17:7725–7727

    Article  CAS  Google Scholar 

  59. Farhat TR, Schlenoff JB (2001) Langmuir 17:1184–1192

    Article  CAS  Google Scholar 

  60. Jaber J, Schlenoff JB (2006) J Am Chem Soc 128:2940–2947

    Article  CAS  Google Scholar 

  61. Francius G, Hemmerle J, Ohayon J, Schaaf P, Voegel J, Picart C, Senger P (2006) Microsc Res Tech 69:84–92

    Article  CAS  Google Scholar 

  62. Schneider A, Vodouhe C, Richert L, Francius G, Le Guen E, Schaaf P, Voegel J, Frisch B, Picart C (2007) Biomacromolecules 8:139–145

    Article  CAS  Google Scholar 

  63. Dong Y, Bhattacharyya D (2008) Compos A 39:1177–1191

    Article  Google Scholar 

  64. Chang JH, An YU, Cho D, Giannelis EP (2003) Polymer 44:3715–3720

    Article  CAS  Google Scholar 

  65. Ma J, Zhang S, Qui Z (2001) J Appl Polym Sci 82:1444–1448

    Article  CAS  Google Scholar 

  66. Ramorino G, Bignotti F, Pandini S, Ricco T (2009) Compos Sci Technol 69:1206–1211

    Article  CAS  Google Scholar 

  67. Giannelis EP (1996) Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  68. Delozier DM, Orwoll RA, Cahoon JF, Johnston NJ, Smith JG Jr, Connell JW (2002) Polymer 43:813–822

    Article  CAS  Google Scholar 

  69. Zulfiqar S, Sarwar MI (2008) Scripta Mater 59:436–439

    Article  CAS  Google Scholar 

  70. Bakshi SR, Balani K, Laha T, Tercero J, Agarwal A (2007) J Manage 59:50–53

    CAS  Google Scholar 

  71. Yusoh K, Jin J, Song M (2010) Prog Org Coat 67:220–224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Philipp Krooß, Hans-Christian Schmidt, and Christian Kunze for their help with the measurements. Prof. Chumlyakov is thanked for providing the single crystals. Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lackmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lackmann, J., Niendorf, T., Maxisch, M. et al. Formability of thermally cured and of nanoclay-reinforced polyelectrolyte films on NiTi substrates. J Mater Sci 47, 151–161 (2012). https://doi.org/10.1007/s10853-011-5782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5782-3

Keywords

Navigation