Skip to main content

Advertisement

Log in

Moisture sorption and plasticization of bloodmeal-based thermoplastics

  • Materials in New Zealand
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sorption characteristics, thermo-mechanical and mechanical properties of bloodmeal-based thermoplastics have been investigated between water activities (a w) of 0.2 and 0.8, using water and tri-ethylene glycol (TEG) as plasticizers. Three different mass ratios of TEG to water were used, 1:1, 1:2 and 5:6 with a total plasticizer content of 60 parts per hundred parts bloodmeal. It was found that the equilibrium moisture content and mechanical properties were highly dependent on relative humidity suggesting that material properties may vary during use. The BET and Flory–Huggins equations gave the best fit for desorption and adsorption, respectively, but a significant difference was observed between adsorption and desorption behaviour below a water activity of 0.6, which was thought to be due to changes in intermolecular interactions. The monolayer adsorption capacity (0.05 g/g) was unaffected by the TEG content, using the BET sorption isotherm. The water activity required to form a monolayer (a wl) was also independent of the amount of TEG, but was different for adsorption and desorption (about 0.5 and 0.2, respectively). Increasing TEG did not have a strong influence on the equilibrium moisture content, especially at low water activity. Dynamic mechanical analysis revealed that the glass transition temperature decreased almost linearly with increasing water activity, ranging between 3 and 85 °C, however, above a water activity of 0.6 a second transition was observed, most likely due to phase separation. Depending of TEG content, tensile strength increased from about 10 to 15 MPa at a water activity of 0.4, where after a drastic decrease was observed. A similar trend was observed for elongation at break. At low water activity (below 0.4) elongation was less than 3%, increasing between 30 and 50% at higher water activities. It was concluded that 10–15 wt% represented a critical point above which mechanical properties becomes very sensitive to the relative humidity of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verbeek CJR, van den Berg LE (2009) Macromol Mater Eng 295(1):10

    Article  Google Scholar 

  2. Verbeek C, van den Berg LE (2011) J Polym Environ 19:1. doi:10.1007/s10924-010-0232-x

    Article  CAS  Google Scholar 

  3. Verbeek CJR, Viljoen C, Pickering KL, van den Berg LE (2009) NZ Patent NZ551531

  4. Vanin FM, Sobral PJA, Menegalli FC, Carvalho RA, Habitante AMQB (2005) Food Hydrocolloid 19(5):899

    Article  CAS  Google Scholar 

  5. Zhang Y, Han J (2008) J Food Sci 73(7):E313. doi:10.1111/j.1750-3841.2008.00867.x

    Article  CAS  Google Scholar 

  6. Su J-F, Huang Z, Zhao Y-H, Yuan X-Y, Wang X-Y, Li M (2009) Ind Crops Prod 31(2):266

    Article  Google Scholar 

  7. Hernandez-Izquierdo VM, Krochta JM (2008) J Food Sci 73(2):30

    Article  Google Scholar 

  8. Maria Martelli S, Moore G, Silva Paes S, Gandolfo C, Laurindo JB (2006) Lebensm Wiss Technol 39(3):292

    Article  Google Scholar 

  9. Cho SY, Rhee C (2002) Lebensm Wiss Technol 35(2):151

    Article  CAS  Google Scholar 

  10. Verbeek CJR, van den Berg LE (2009) Recent Pat Mater Sci 2(3):171

    Article  CAS  Google Scholar 

  11. Sharma S, Hodges JN, Luzinov I (2008) J Appl Polym Sci 110(1):459. doi:10.1002/app.28601

    Article  CAS  Google Scholar 

  12. Swain SN, Rao KK, Nayak PL (2004) J Appl Polym Sci 93(6):2590

    Article  CAS  Google Scholar 

  13. Zhang J, Mungara P, Jane J (2001) Polymer 42(6):2569

    Article  CAS  Google Scholar 

  14. Pommet M, Redl A, Guilbert S, Morel M-H (2005) J Cereal Sci 42(1):81

    Article  CAS  Google Scholar 

  15. Ortiz MER, San Martin-Martinez E, Padilla LPM (2008) Starch-Starke 60(10):577. doi:10.1002/star.200800212

    Article  CAS  Google Scholar 

  16. Hochstetter A, Talja RA, Helén HJ, Hyvönen L, Jouppila K (2006) Lebensm Wiss Technol 39(8):893

    Article  CAS  Google Scholar 

  17. Kristo E, Biliaderis CG (2006) Food Hydrocolloid 20(7):1057

    Article  CAS  Google Scholar 

  18. Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Carbohydr Polym 60(3):283

    Article  CAS  Google Scholar 

  19. Perdomo J, Cova A, Sandoval AJ, García L, Laredo E, Müller AJ (2009) Carbohydr Polym 76(2):305

    Article  CAS  Google Scholar 

  20. Fabra MJ, Talens P, Chiralt A (2009) Food Hydrocolloid 24(4):384

    Article  Google Scholar 

  21. Cassini AS, Marczak LDF, Noreña CPZ (2006) J Food Eng 77(1):194

    Article  CAS  Google Scholar 

  22. Brett B, Figueroa M, Sandoval A, Barreiro J, Müller A (2009) Food Biophys 4(3):151. doi:10.1007/s11483-009-9112-0

    Article  Google Scholar 

  23. Jangchud A, Chinnan MS (1999) Lebensm Wiss Technol 32(2):89

    Article  CAS  Google Scholar 

  24. Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN (2003) Carbohydr Polym 53(4):431

    Article  CAS  Google Scholar 

  25. Alix S, Philippe E, Bessadok A, Lebrun L, Morvan C, Marais S (2009) Bioresour Technol 100(20):4742

    Article  CAS  Google Scholar 

  26. Sopade PA, Ajisegiri ESA, Chukwu O, Abass AB (2010) J Food Process Eng 33:385

    Article  Google Scholar 

  27. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2002) Food Bioprod Process 80(2):118

    Article  CAS  Google Scholar 

  28. Kim SD, Chakravarti S, Tian J, Bell P (2010) Polymer 51(10):2199

    Article  CAS  Google Scholar 

  29. Jonquières A, Perrin L, Arnold S, Lochon P (1998) J Membr Sci 150(1):125

    Article  Google Scholar 

  30. Mo XQ, Sun XZ (2001) J Am Oil Chem Soc 78(8):867

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Wallace Corporation for their support in supplying bloodmeal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casparus J. R. Verbeek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbeek, C.J.R., Koppel, N.J. Moisture sorption and plasticization of bloodmeal-based thermoplastics. J Mater Sci 47, 1187–1195 (2012). https://doi.org/10.1007/s10853-011-5770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5770-7

Keywords

Navigation