Skip to main content
Log in

Ion conduction in vanadium-substituted LiSn2P3O12 electrolyte nanomaterials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

LiSn2P3 − yVyO12 powders with y = 0.2, 0.4, 0.6, and 0.8 are prepared by mechanochemical milling method. The pellets of the compounds are heat treated at temperatures between 700 to 1,000 °C for sintering period of 8 h. X-ray diffraction analysis indicates that all samples consist of rhombohedral crystalline LiSn2P3O12 phase. Energy dispersive X-ray analysis confirmed that V5+ has been successfully substituted into LiSn2P3O12 crystalline phase. The conductivities of the pellets are determined using impedance spectroscopy. Impedance analysis shows enhancement in both bulk and grain boundary conductivities with increase in y. The enhancement in bulk conductivity is due to decrease in bulk activation energy reflecting an increase in ion mobility as a result of an increase in bottleneck size. Enhancement in grain boundary conductivity is attributed to increase in the number of conducting pathways due to an increase in crystallite homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goodenough JB, Hong HYP, Kafalas JA (1976) Mater Res Bull 11:203

    Article  CAS  Google Scholar 

  2. Leo CJ, Chowdari BVR, Rao GVS, Souquet JL (2002) Mater Res Bull 37:1419

    Article  CAS  Google Scholar 

  3. Kumar PP, Yashonath S (2006) J Chem Sci 118:135

    Article  CAS  Google Scholar 

  4. Taoufik I, Haddad M, Brochu R, Berger R (1999) J Mater Sci 34:2943. doi:https://doi.org/10.1023/A:1016064913446

    Article  CAS  Google Scholar 

  5. Berry FJ, Costantini N, Smart LE (2006) Solid State Ionics 177:2889

    Article  CAS  Google Scholar 

  6. Anantharamulu N, Rao KK, Rambabu G, Kumar BV, Radha V, Vithal M (2011) J Mater Sci 46:2821. doi:https://doi.org/10.1007/s10853-011-5302-5

    Article  CAS  Google Scholar 

  7. Juarez AM, Jimenez R, Martin PD, Ibanez J, Rojo JM (1997) J Phys Condens Matter 9:4119

    Article  Google Scholar 

  8. Lazarraga MG, Ibañez J, Tabellout M, Rojo JM (2004) Compos Sci Technol 64(5):759

    Article  CAS  Google Scholar 

  9. Norhaniza R, Subban RHY, Mohamed NS (2010) Adv Mater Res 129–131:338

    Article  Google Scholar 

  10. Ward BJ, Liu CC, Hunter GW (2003) J Mater Sci 21:4289. doi:https://doi.org/10.1023/A:1026374830114

    Article  Google Scholar 

  11. Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Angelo PC (2007) J Mater Sci 42:5470. doi:https://doi.org/10.1007/s10853-006-0983-x

    Article  CAS  Google Scholar 

  12. Aboulaich A, Conte DE, Fourcade JO, Jordy C, Willmann P, Jumas JC (2010) J Power Sources 195:3316

    Article  CAS  Google Scholar 

  13. Orliukas AF, Dindune A, Kanepe Z, Ronis J, Bagdonas B, Kezionis A (2006) Electrochim Acta 51:6194

    Article  CAS  Google Scholar 

  14. Sobiestianskas R, Dindune A, Kanepe Z, Ronis J, Kezionis A, Kazakevicius E, Orliukas A (2000) Mater Sci Eng B 76:184

    Article  Google Scholar 

  15. Cretin M, Fabry P (1999) J Eur Ceram Soc 19:2931

    Article  CAS  Google Scholar 

  16. Godichemeier M, Michel B, Orliukas A, Bohac P, Sasaki K, Gauckler L, Heinrich H, Schwander P, Kostorz G, Hofmann H, Frei O (1994) J Mater Res 9:1228

    Article  Google Scholar 

  17. Koteswara KR, Rambabu G, Raghavender M, Prasad G, Kumar GS, Vithal M (2005) Solid State Ionics 176:2701

    Article  Google Scholar 

  18. Juarez AM, Pecharroman C, Iglesias JE, Rojo JM (1998) J Phys Chem 102:372

    Article  Google Scholar 

  19. Winand JM, Rulmont A, Tarte P (1991) J Solid State Chem 93:341

    Article  CAS  Google Scholar 

  20. Best AS, Newman PJ, MacFarlane DR, Nairn KM, Wong S, Forsyth M (1999) Solid State Ionics 126:191

    Article  CAS  Google Scholar 

  21. Chang CM, Lee Y, Hong SH (2005) J Am Ceram Soc 88(7):1803

    Article  CAS  Google Scholar 

  22. Fu J (1997) Solid State Ionics 104:191

    Article  CAS  Google Scholar 

  23. Mei A, Jiang QH, Lin YH, Nan CW (2009) J Alloys Compd 486:871

    Article  CAS  Google Scholar 

  24. Kawai H, Kuwano J (1994) J Electrochem Soc L78:141

    Google Scholar 

  25. Chowdari BVR, Radhakrishnan K, Thomas KA, Subba Rao GVL (1989) Mater Res Bull 24(2):221

    Article  CAS  Google Scholar 

  26. Sugantha M, Varadaraju UV (1997) Solid State Ionics 95:201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Norhaniza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norhaniza, R., Subban, R.H.Y. & Mohamed, N.S. Ion conduction in vanadium-substituted LiSn2P3O12 electrolyte nanomaterials. J Mater Sci 46, 7815–7821 (2011). https://doi.org/10.1007/s10853-011-5762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5762-7

Keywords

Navigation