Journal of Materials Science

, Volume 46, Issue 24, pp 7806–7814 | Cite as

Influence of oxides on the stability of zinc foam

  • Avinash Chethan
  • Francisco Garcia-MorenoEmail author
  • Nelia Wanderka
  • B. S. Murty
  • John Banhart


The influence of oxides on the stabilisation of zinc foam made by foaming-compacted powder mixtures has been investigated by varying the oxide content in the zinc powder used by oxidation and reduction. Optical, scanning electron and transmission electron microscopy as well as energy dispersive X-ray mapping were used to determine the oxide distribution, morphology and structure in the foams. The study revealed that with increase in the oxide content of the foam, the maximum expansion and expansion rate increased. Small amount of nano-sized oxide particles and their cluster, which are randomly distributed, were observed within the bulk of foam. But the major fraction of oxides is observed on the surface of pores in the form of clusters. These clusters are distributed uniformly all over the surface. Effect of these oxides on the stability of foam is discussed. The formation of satellite pores, which is characteristic signature of zinc foams, and their stability, is investigated.


Foam Oxide Content Zinc Powder Maximum Expansion Plateau Border 



This work was carried out under cooperation of Technical University Berlin and Indian Institute of Technology Madras within the sandwich program of the Deutscher Akademischer Austauschdienst (DAAD). The authors express thanks to Mr. Schubert-Bischoff, Helmholtz-Zentrum Berlin and Dr. Oliver Görke, Department of Ceramics, Technische Universität Berlin for their help in experimentation.


  1. 1.
    Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams—A design guide. Butterworth-Heinemann, LondonGoogle Scholar
  2. 2.
    Banhart J (2001) Prog Mater Sci 46:559CrossRefGoogle Scholar
  3. 3.
    Degischer H-P, Kriszt B (2002) Handbook of cellular metals. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  4. 4.
    Banhart J (2000) J Metals 12:22Google Scholar
  5. 5.
    Ip SW, Wang Y, Toguri JM (1999) Can Metall Q 38:81CrossRefGoogle Scholar
  6. 6.
    Leitlmeier D, Degischer H-P, Flankl HJ (2002) Adv Eng Mater 4:735CrossRefGoogle Scholar
  7. 7.
    Haibel A, Rack A, Banhart J (2006) Appl Phys Lett 89:154102CrossRefGoogle Scholar
  8. 8.
    Körner C, Arnold M, Singer RF (2005) Mater Sci Eng A 396:28CrossRefGoogle Scholar
  9. 9.
    Dudka A, Garcia-Moreno F, Wanderka N, Banhart J (2008) Acta Mater 56:3990CrossRefGoogle Scholar
  10. 10.
    Banhart J (2006) Adv Eng Mater 8:781CrossRefGoogle Scholar
  11. 11.
    Asavavisithchai S, Kennedy AR (2006) J Colloid Interface Sci 297:715CrossRefGoogle Scholar
  12. 12.
    Weber M (1995) Thesis, University of Clausthal, GermanyGoogle Scholar
  13. 13.
    Weigand P (1999) Thesis, University of Aachen, GermanyGoogle Scholar
  14. 14.
    Asavavisithchai S, Kennedy AR (2006) Adv Eng Mater 6:568CrossRefGoogle Scholar
  15. 15.
    Banhart J, Weber M, Baumeister J (1995) In: Proceedings of the European conference on advanced PM materials. European Powder Metallurgy Association, Birmingham, pp 201–208Google Scholar
  16. 16.
    Thornton PH, Magee CL (1975) Met Trans A 6A:1801CrossRefGoogle Scholar
  17. 17.
    Dasler M, Törnqvist S (2000) Diploma work, Stockholm, SwedenGoogle Scholar
  18. 18.
    Irretier A, Banhart J (2005) Acta Mater 53:4903CrossRefGoogle Scholar
  19. 19.
    Banhart J (2008) Gold Bull 41:251CrossRefGoogle Scholar
  20. 20.
    Kovacik J, Simancik F (2001) In: Banhart J, Fleck NA, Mortensen A (eds) Metal foams and porous metal structures. MIT-Verlag, Bremen, pp 355–358Google Scholar
  21. 21.
    Kovacik J, Simancik F (2004) Met Mater 42:79Google Scholar
  22. 22.
    Stöbener K, Weigend M, Rausch G (2003) In: Banhart J, Fleck NA, Mortensen A (eds) Cellular metals: manufacture, properties, applications. MIT-Verlag, Berlin, pp 161–164Google Scholar
  23. 23.
    Mukherjee M, Garcia-Moreno F, Jimenez C, Banhart J (2010) Adv Eng Mater 12:472CrossRefGoogle Scholar
  24. 24.
    Banhart J (1999) Europhys News 30:17CrossRefGoogle Scholar
  25. 25.
    Banhart J, Bellmann D, Clemens H (2001) Acta Mater 49:3409CrossRefGoogle Scholar
  26. 26.
    Rosumek MR (2006) Diploma thesis, Tecnical University Berlin, GermanyGoogle Scholar
  27. 27.
    Garcia-Moreno F, Fromme M, Banhart J (2004) Adv Eng Mater 6:416CrossRefGoogle Scholar
  28. 28.
    Software ‘Image tool’: Accessed 9 Jan 2011
  29. 29.
    Mukherjee M, Garcia-Moreno F, Banhart J (2007) Trans Ind Inst Metals 60:133Google Scholar
  30. 30.
    Mukherjee M, Garcia-Moreno F, Banhart J (2010) Acta Mater 58:6358CrossRefGoogle Scholar
  31. 31.
    Cao JL, Li LT, Wu JX, Lu YP, Gui ZL (2002) Corrosion 58:698CrossRefGoogle Scholar
  32. 32.
    Okamoto H (1990) In: Massalski TB (ed) ASM, binary phase diagrams, 2nd edn. ASM International, Materials ParkGoogle Scholar
  33. 33.
    Eichenauer W, Markopoulos J (1974) Z. Metallkunde 65:649Google Scholar
  34. 34.
    San-Martin A, Manchester FD (1992) J Phase Equilib 13:17CrossRefGoogle Scholar
  35. 35.
    Garcia-Moreno F, Banhart J (2007) Coll Surf A309:264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Avinash Chethan
    • 1
    • 2
  • Francisco Garcia-Moreno
    • 3
    Email author
  • Nelia Wanderka
    • 3
  • B. S. Murty
    • 2
  • John Banhart
    • 1
    • 3
  1. 1.Technische Universität BerlinBerlinGermany
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia
  3. 3.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany

Personalised recommendations