Skip to main content
Log in

Impact of synthesis conditions on meso- and macropore structures of resorcinol–formaldehyde xerogels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Xerogels were prepared by the sol–gel polymerization of resorcinol with formaldehyde at different conditions. The effects of different synthesis factors (namely, resorcinol-to-formaldehyde ratio, resorcinol-to-water ratio, resorcinol-to-catalyst ratio, and initial solution pH) on the surface areas, pore volumes, pore size distributions, and adsorption capacity of liquid nitrogen were studied. Factorial design was also used to investigate the relative significance of these factors on the resulting xerogels properties, and the possible interactions between them. The mean effects of the most significant factors and factor interactions on determining the pore structures and adsorption capacities were evaluated. The synthesized xerogels were characterized by Fourier transmission infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, and surface area analyzer. The results showed that surface areas, pore size distributions, and nitrogen adsorption capacity are dependent completely on the recipes used to prepare the xerogels. Pore structure results put xerogel samples as candidates for adsorption technology, ultra-filtration, and nano-filtration fields based on pore sizes and pore volume scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mahata N, Pereira MFR, Suárez-García F, Martínez-Alonso A, Tascón JMD, Figueiredo JL (2008) J Colloid Interface Sci 324:150

    Article  CAS  Google Scholar 

  2. Pekala RW (1989) J Mater Sci 24:3221. doi:https://doi.org/10.1007/BF01139044

    Article  CAS  Google Scholar 

  3. Liu B, Creager S (2010) J Power Sources 195:1812

    Article  CAS  Google Scholar 

  4. Wen Y, Shen Z (2001) Carbon 39:2369

    Article  CAS  Google Scholar 

  5. Czakkel O, Marthi K, Geissler E, László K (2005) Microporous Mesoporous Mater 86:124

    Article  CAS  Google Scholar 

  6. Zhao H, Zhu Y, Li W, Hu H (2008) New Carbon Mater 23:361

    CAS  Google Scholar 

  7. Lee YJ, Jung JC, Yi J, Baeck S, Yoon JR, Song IK (2010) Curr Appl Phys 10:682

    Article  Google Scholar 

  8. Li J, Wang X, Wang Y, Huang Q, Dai C, Gamboa S, Sebastian PJ (2008) J Non-Cryst Solids 354:19

    Article  CAS  Google Scholar 

  9. Zheivot VI, Molchanov VV, Zaikovskii VI, Krivoruchko VN, Zaitseva NA, Shchuchkin MN (2010) Microporous Mesoporous Mater 130:7

    Article  CAS  Google Scholar 

  10. Wang Z, Zhang X, Liu X, Lv M, Yang K, Meng J (2011) Carbon 49:161

    Article  CAS  Google Scholar 

  11. Job N, Panariello F, Marien J, Crine M, Pirard JP, Léonard A (2006) J Non-Cryst Solids 352:24

    Article  CAS  Google Scholar 

  12. Albert DF, Andrew GRs, Mendenhall RS, Bruno JW (2001) J Non-Cryst Solids 296:1

    Article  CAS  Google Scholar 

  13. Job N, Panariello F, Crine M, Pirard JP, Léonard A (2007) Colloids Surf A 293:224

    Article  CAS  Google Scholar 

  14. Shady SA (2009) J Hazard Mater 167:947

    Article  CAS  Google Scholar 

  15. Al-Muhtaseb SA, Ritter JA (2003) Adv Mater 15:101

    Article  CAS  Google Scholar 

  16. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, London

    Google Scholar 

  17. Lin C, Ritter JA (1997) Carbon 35:1271

    Article  CAS  Google Scholar 

  18. Zanto EJ, Al-Muhtaseb SA, Ritter JA (2002) Ind Eng Chem Res 41:3151

    Article  CAS  Google Scholar 

  19. Matos I, Fernandes S, Guerreiro L, Barata S, Ramos AM, Vital J, Fonseca IM (2006) Microporous Mesoporous Mater 92:38

    Article  CAS  Google Scholar 

  20. Horikawa T, Ono Y, Hayashi J, Muroyama K (2004) Carbon 42:2683

    Article  CAS  Google Scholar 

  21. Hwang SW, Hyun HS (2004) J Non-Cryst Solids 347:238

    Article  CAS  Google Scholar 

  22. Van der Bruggen B, Everaert K, Wilms W, Vandecasteele C (2001) J Membr Sci 193:239

    Article  Google Scholar 

  23. Zhu B, Clifford DA, Chellam S (2005) Water Res 39:3098

    Article  CAS  Google Scholar 

  24. Bierman EL, Hayes TL, Hawkins JN, Ewing AM, Lindgren FT (1966) J Lipid Res 7:65

    CAS  Google Scholar 

  25. Lee WH, Park JS, Sok JH, Reucroft PJ (2005) Appl Surf Sci 246:77

    Article  CAS  Google Scholar 

  26. González-González JF, Alexandre-Franco M, González-Garcìa CM, Encinar-Martìn JM, Bernalte-Garcìa A, Gómez-Serrano V (2009) Powder Technol 192:339

    Article  Google Scholar 

Download references

Acknowledgements

This publication was made possible by the support of an NPRP grant from the QNRF. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaheen A. Al-Muhtaseb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awadallah-F, A., Elkhatat, A.M. & Al-Muhtaseb, S.A. Impact of synthesis conditions on meso- and macropore structures of resorcinol–formaldehyde xerogels. J Mater Sci 46, 7760–7769 (2011). https://doi.org/10.1007/s10853-011-5755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5755-6

Keywords

Navigation