Journal of Materials Science

, Volume 46, Issue 24, pp 7706–7712 | Cite as

Growth of hydrophobic TiO2 on wood surface using a hydrothermal method

  • Qingfeng Sun
  • Yun Lu
  • Yixing LiuEmail author


Hydrophobic titanium dioxide (TiO2) was successfully grown on a wood surface using a hydrothermal method. Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and water contact angle (WCA) were employed to characterize the features of grown TiO2 and its hydrophobicity. EDS, XRD, and FTIR proved that anatase TiO2 chemically bonded to the wood surface through the combination of hydrogen groups during the hydrothermal process. The values of WCAs manifested that the hydrophobicity of the treated wood was mainly dependent on specific reaction conditions, especially on reaction pH value and hydrothermal temperature. The highest WCA reached 154° when the hydrothermal temperature was 130 °C. The treated wood thus possessed a superhydrophobic surface.


TiO2 Sodium Dodecyl Sulfate Water Contact Angle Wood Sample Hydrothermal Process 



This study was financially supported by the Breeding Plan of Excellent Doctoral Dissertation of Northeast Forestry University (GRAP09) and the Programme of Introducing Talents of Discipline to Universities of China (B08016).


  1. 1.
    Barata MAB, Neves MC, Pascoal Neto C, Trindade T (2005) Dyes Pigments 65:125CrossRefGoogle Scholar
  2. 2.
    Hübert T, Unger B, Bücker M (2010) J Sol Gel Sci Technol 53:384CrossRefGoogle Scholar
  3. 3.
    Kim GG, Kang JA, Kim JH, Kim SJ, Lee NH, Kim SJ (2006) Surf Coat Technol 201:3761CrossRefGoogle Scholar
  4. 4.
    Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH (2005) Thin Solid Films 475:171CrossRefGoogle Scholar
  5. 5.
    Kuroda A, Joly P, Shibata N, Takeshige H, Asakura K (2008) J Am Oil Chem Soc 85:549CrossRefGoogle Scholar
  6. 6.
    Li J, Yu H, Sun Q, Liu Y, Cui Y, Lu Y (2010) Appl Surf Sci 256:5046CrossRefGoogle Scholar
  7. 7.
    Marques PAAP, Trindade T, Neto CP (2006) Compos Sci Technol 66:1038CrossRefGoogle Scholar
  8. 8.
    Miyafuji H, Saka S (1997) Wood Sci Technol 31:449Google Scholar
  9. 9.
    Schmalzl KJ, Evans PD (2003) Polym Degrad Stab 82:409CrossRefGoogle Scholar
  10. 10.
    Tadanaga K, Morinaga J, Matsuda A, Minami T (2000) Chem Mater 12:590CrossRefGoogle Scholar
  11. 11.
    Yang D, Xu Y, Wu D, Sun Y, Zhu H, Deng F (2006) J Phys Chem C 111:999CrossRefGoogle Scholar
  12. 12.
    Tshabalala M, Gangstad J (2003) J Coat Technol 75:37CrossRefGoogle Scholar
  13. 13.
    Tshabalala M, Sung L (2007) J Coat Technol 4:483CrossRefGoogle Scholar
  14. 14.
    Yang D, Liu H, Zheng Z, Yuan Y, Zhao J, Waclawik ER, Ke X, Zhu H (2009) J Am Chem Soc 131:17885CrossRefGoogle Scholar
  15. 15.
    Yang D, Zheng Z, Zhu H, Liu H, Gao X (2008) Adv Mater 20:2777CrossRefGoogle Scholar
  16. 16.
    Yang H, Deng Y (2008) J Colloid Interface Sci 325:588CrossRefGoogle Scholar
  17. 17.
    Kibanova D, Trejo M, Destaillats H, Cervini-Silva J (2009) Appl Clay Sci 42:563CrossRefGoogle Scholar
  18. 18.
    Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Adv Mater 14:1857CrossRefGoogle Scholar
  19. 19.
    Feng X, Zhai J, Jiang L (2005) Angew Chem Int Ed 44:5115CrossRefGoogle Scholar
  20. 20.
    Gao X, Jiang L (2004) Nature 432:36CrossRefGoogle Scholar
  21. 21.
    Baldacchini T, Carey JE, Zhou M, Mazur E (2006) Langmuir 22:4917CrossRefGoogle Scholar
  22. 22.
    Jin M, Feng X, Feng L, Sun T, Zhai J, Li T, Jiang L (2005) Adv Mater 17:1977CrossRefGoogle Scholar
  23. 23.
    Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Angew Chem Int Ed 41:1221CrossRefGoogle Scholar
  24. 24.
    Fürstner R, Barthlott W, Neinhuis C, Walzel P (2005) Langmuir 21:956CrossRefGoogle Scholar
  25. 25.
    Öner D, McCarthy TJ (2000) Langmuir 16:7777CrossRefGoogle Scholar
  26. 26.
    Nakajima A, Abe K, Hashimoto K, Watanabe T (2000) Thin Solid Films 376:140CrossRefGoogle Scholar
  27. 27.
    Zhao N, Xu J, Xie Q, Weng L, Guo X, Zhang X, Shi L (2005) Macromol Rapid Commun 26:1075CrossRefGoogle Scholar
  28. 28.
    Zhang G, Wang D, Gu Z, Möhwald H (2005) Langmuir 21:9143CrossRefGoogle Scholar
  29. 29.
    Tsoi S, Fok E, Sit JC, Veinot JGC (2004) Langmuir 20:10771CrossRefGoogle Scholar
  30. 30.
    Erbil HY, Demirel AL, Avcı Y, Mert O (2003) Science 299:1377CrossRefGoogle Scholar
  31. 31.
    Shirtcliffe NJ, Mchale G, Newton MI, Perry CC, Roach P (2005) Chem Commun 25:3135CrossRefGoogle Scholar
  32. 32.
    Guo Z, Zhou F, Hao J, Liu W (2005) J Am Chem Soc 127:15670CrossRefGoogle Scholar
  33. 33.
    Ming W, Wu D, van Benthem R, de With G (2005) Nano Lett 5:2298CrossRefGoogle Scholar
  34. 34.
    Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, Chen Y (2005) Langmuir 21:8978CrossRefGoogle Scholar
  35. 35.
    Tavana H, Amirfazli A, Neumann AW (2006) Langmuir 22:5556CrossRefGoogle Scholar
  36. 36.
    Amberg-Schwab S, Hoffmann M, Bader H, Gessler M (1998) J Sol Gel Sci Technol 13:141CrossRefGoogle Scholar
  37. 37.
    Saka S, Ueno T (1997) Wood Sci Technol 31:457Google Scholar
  38. 38.
    Mahltig B, Swaboda C, Roessler A, Böttcher H (2008) J Mater Chem 18:3180CrossRefGoogle Scholar
  39. 39.
    Pandey KK (1999) J Appl Polym Sci 71:1969CrossRefGoogle Scholar
  40. 40.
    Colomer MT, Velasco MJ (2007) J Eur Ceram Soc 27:2369CrossRefGoogle Scholar
  41. 41.
    Wu R, Wei Y, Zhang Y (1999) Mater Res Bull 34:2131CrossRefGoogle Scholar
  42. 42.
    Zhang J, Xiao X, Nan J (2010) J Hazard Mater 176:617CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Laboratory of Bio-based Material Science and Technology, Ministry of EducationNortheast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations