Skip to main content

Advertisement

Log in

Enhancing the photovoltaic effect in the infrared region by germanium quantum dots inserted in the intrinsic region of a silicon p-i-n diode with nanostructure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We show that a strong photovoltaic response in the infrared region of the solar spectrum (1.1–1.4 μm wavelength) is obtained by inserting a multilayer structure of germanium quantum dots and silicon spacer layers into the intrinsic region of a silicon p-i-n diode. The multilayer structure (active layer) is deposited on an n-type silicon wafer using the technique of ultra-high vacuum chemical vapor deposition. Reflection high-energy electron diffraction has been used to in situ monitor the transition from the two-dimensional to three-dimensional growth mode of germanium on silicon. The p-type layer of the diode is formed in situ by doping a layer of silicon with boron. Prototype solar cells have been fabricated in situ to measure the energy conversion efficiency. Photoluminescence spectroscopy has been used to probe the presence of any defect-related energy levels within the band gap, and the quality of the diode is determined from measurement of dark current. Scanning electron microscopy, atomic force microscopy, and transmission/scanning transmission electron microscopy have been used to characterize the structure of the active layer. It is demonstrated that by optimizing the structure of the active layer to minimize recombination of charge carriers in the quantum dots, a short-circuit current of 24 mA/cm2 and an open-circuit voltage of 0.6 V could be achieved leading to an energy conversion efficiency of about 11.5% corresponding to an active layer with a thickness of 300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schockley W, Quessier HJ (1961) J Appl Phys 32(3):510

    Article  Google Scholar 

  2. Kurtz S, Friedman D, Geisz J, McMahon W (2007) J Cryst Growth 298:748

    Article  CAS  Google Scholar 

  3. Nozik AJ (2010) Nano Lett 10:2735

    Article  CAS  Google Scholar 

  4. Chang JA, Rhee JH, Im SH, Lee YH, Kim HJ, Soek S, Nazerrudi MK, Gratzel M (2010) Nano Lett 10:2609

    Article  CAS  Google Scholar 

  5. Badescu V, Paulescu M (2010) Physics of nanostructured solar cells. Nova Science Publishers, New York

    Google Scholar 

  6. Saga T (2006) Nanostructured materials for solar energy conversion. Elsevier B.V. Publishing Co, Amsterdam

    Google Scholar 

  7. Eaglesham DJ, Cerullo M (1990) Phys Rev Lett 64(16):1943

    Article  CAS  Google Scholar 

  8. Tersoff J, Teichert C, Lagally MG (1996) Phys Rev Lett 76:1675

    Article  CAS  Google Scholar 

  9. Teichert C, Lagally MG, Peticolas LJ, Bean JC, Tersoff J (1996) Phys Rev B53:1634

    Google Scholar 

  10. Xie Q, Madhukar A, Chen P, Kobayashi NP (1995) Phys Rev Lett 75:2542

    Article  CAS  Google Scholar 

  11. Thanh VL, Yam V, Boucaud P, Fortuna F, Ulysse C, Bouchier D, Vervoort L, Lourtioz LM (1999) Phys Rev B60:5851

    Google Scholar 

  12. Thanh VL, Yam V, Boucacud P, Zheng Y, Bouchier D (2000) Thin Solid Films 369:43

    Article  Google Scholar 

  13. Konle J, Presting H, Kibble H (2003) Physica E16:596

    Google Scholar 

  14. Usami N, Alguno A, Ujihara T, Fujiwara K, Sazaki G, Nakajima K, Sawano K, Shiraki Y (2003) Sci Technol Adv Mater 4:367

    Article  CAS  Google Scholar 

  15. Huang W, Chen C, Li X, Xiong X, Liu Z, Zhang W, Xu J, Tsien P (2004) Metals Mater Int 10(5):435

    Article  CAS  Google Scholar 

  16. Harame DL, Meyerson BS (2001) IEEE Trans 48(11):2555

    Article  Google Scholar 

  17. Meyerson BS (1992) Proc IEEE 80(2):1592

    Article  CAS  Google Scholar 

  18. Hartmann JM, Andrieu F, Lafond D, Ernst T, Bougmilowicz Y, Delaye V, Webber O, Rouchon D, Rapon AM, Cherkashin N (2008) Mater Sci Eng B 153/154:76

    Article  Google Scholar 

  19. Yang WJ, Ma ZQ, Tang X, Freng CB, Zhao WG, Shi PP (2008) Sol Energy 82:106

    Article  CAS  Google Scholar 

  20. Saucer TW, Lee JE, Martin AJ, Tien D, Millunchick JM, Sih V (2011) Solid State Commun 151(4):269

    Article  CAS  Google Scholar 

  21. Zundel MK, Specht P, Eberl K, Jin-Philipp NY, Philipp F (1997) Appl Phys Lett 71:2972

    Article  CAS  Google Scholar 

  22. Solomon GS, Trezza JA, Marshall AF, Harris JS (1996) Phys Rev Lett 76:952

    Article  CAS  Google Scholar 

  23. Nelson J (2003) The physics of solar cells. Imperial College Press, London, UK, p 11

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge the support of King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia through project number AR-28-043. Also, the continued support of King Fahd University of Petroleum & Minerals is appreciated. The growth of the active layers work was contracted by the Institut d’Electronnique Fondamentale, Universite Paris-Sud, France (UMR CNRS no. 8622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tawancy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawancy, H.M. Enhancing the photovoltaic effect in the infrared region by germanium quantum dots inserted in the intrinsic region of a silicon p-i-n diode with nanostructure. J Mater Sci 47, 93–99 (2012). https://doi.org/10.1007/s10853-011-5728-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5728-9

Keywords

Navigation