Skip to main content

Tailoring coercivity and magnetic anisotropy of Co nanowire arrays by microstructure

Abstract

To tailor coercivity and magnetic anisotropy, we have fabricated Co nanowire arrays in the pores of anodic aluminum oxide templates by electrodeposition. Microstructure measurements performed by X-ray diffraction show that Co nanowire arrays are hexagonal close-packed (HCP) structures with different crystalline textures. A wide range in change of coercivity from 925 to 3310 Oe at 300 K, with a maximum of up to 4050 Oe at 5 K, can be found for nanowire arrays with a diameter of 20 nm. This may be the highest value and the widest range of coercivity reported for Co nanowires prepared by electrodeposition method. This finding could be attributed to the adjustment of the microstructure of the cobalt nanowire arrays prepared in different experimental conditions. We have also investigated the relationship between the crystalline textures and the magnetic properties of Co nanowire arrays using micromagnetic simulation combined with microstructure measurements. The preferred orientation of nanowire arrays, such as (1000) or (0002), is a key factor in determining coercivity. This wide tailoring of coercivity makes possible more promising applications of Co nanowire arrays with fixed diameter and length.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Wang JB, Zhou XZ, Liu QF, Xue DS, Li FS, Li B, Kunkel HP, Williams G (2004) Nanotechnology 15(5):485

    Article  CAS  Google Scholar 

  2. 2.

    Wang CY, Fang JY, He JB, O’Connor CJ (2003) J Colloid Interface Sci 259(2):411

    Article  CAS  Google Scholar 

  3. 3.

    Xu JX, Wang KY (2008) Appl Surf Sci 254(20):6623

    Article  CAS  Google Scholar 

  4. 4.

    Chun JY, Lee JW (2010) Eur J Inorg Chem 27:4251

    Article  Google Scholar 

  5. 5.

    Xu XJ, Fang XS, Zeng HB, Zhai TY, Bando Y, Golberg D (2010) Sci Adv Mater 2(3):273

    Article  CAS  Google Scholar 

  6. 6.

    Darques M, Piraux L, Encinas A, Bayle-Guillemaud P, Popa A, Ebels U (2005) Appl Phys Lett 86(7):072508

    Article  Google Scholar 

  7. 7.

    Sklyuyev A, Ciureanu M, Akyel C, Ciureanu P, Yelon A (2009) J Appl Phys 105(2):023914

    Article  Google Scholar 

  8. 8.

    Masuda H, Fukuda K (1995) Science 9:1466

    Article  Google Scholar 

  9. 9.

    Wang PP, Gao LM, Qiu ZY, Song XP, Wang LQ, Yang S, Murakami R (2008) J Appl Phys 104(6):064304

    Article  Google Scholar 

  10. 10.

    Ramazani A, Kashi MA, Alikhani M, Erfanifam S (2008) Mater Chem Phys 112(1):285

    Article  CAS  Google Scholar 

  11. 11.

    Sharma G, Pishko MV, Grimes CA (2007) J Mater Sci 42(13):4738. doi:10.1007/s10853-006-0769-1

    Article  CAS  Google Scholar 

  12. 12.

    Wu XJ, Zhu F, Mu C, Liang YQ, Xu LF, Chen QW, Chen RZ, Xu DS (2010) Coord Chem Rev 254(9–10):1135

    Article  CAS  Google Scholar 

  13. 13.

    Yang W, Cui CX, Sun JB, Wang BL (2010) J Mater Sci 45(6):1523. doi:10.1007/s10853-009-4116-1

    Article  Google Scholar 

  14. 14.

    Yang JA, Cui CX, Yang W, Hu B, Sun JB (2011) J Mater Sci 46(7):2379. doi:10.1007/s10853-010-5085-0

    Article  CAS  Google Scholar 

  15. 15.

    Ren Y, Liu QF, Li SL, Wang JB, Han XH (2009) J Magn Magn Mater 321(3):226

    Article  CAS  Google Scholar 

  16. 16.

    Kartopu G, Yalcin O, Es-Souni M, Basaran AC (2008) J Appl Phys 103(9):093915

    Article  Google Scholar 

  17. 17.

    Zeng H, Zheng M, Skomski R, Sellmyer DJ, Liu Y, Menon L, Bandyopadhyay S (2000) J Appl Phys 87(9):4718

    Article  CAS  Google Scholar 

  18. 18.

    Navas D, Pirota KR, Zelis PM, Velazquez D, Ross CA, Vazquez M (2008) J Appl Phys 103(7):07D523

    Article  Google Scholar 

  19. 19.

    Ferre R, Ounadjela K, George JM, Piraux L, Dubois S (1997) Phys Rev B 56(21):14066

    Article  CAS  Google Scholar 

  20. 20.

    Darques M, Encinas A, Vila L, Piraux L (2004) J Phys D 37(10):1411

    Article  CAS  Google Scholar 

  21. 21.

    Li FS, Wang T, Ren LY, Sun JR (2004) J Phys Condens Matter 16(45):8053

    Article  CAS  Google Scholar 

  22. 22.

    Zhang J, Jones GA, Shen TH, Donnelly SE, Li GH (2007) J Appl Phys 101(5):054321

    Google Scholar 

  23. 23.

    Maaz K, Karim S, Usman M, Mumtaz A, Liu J, Duan JL, Maqbool M (2010) Nanoscale Res Lett 5(7):1111

    Article  CAS  Google Scholar 

  24. 24.

    Ren Y, Dai YY, Zhang B, Liu QF, Xue DS, Wang JB (2010) Nanoscale Res Lett 5(5):853

    Article  CAS  Google Scholar 

  25. 25.

    Donahue MJ, Porter DJ (2002) OOMMF user’s guide, version 1.2a3. http://math.nist.gov/oommf

  26. 26.

    Darques M, Encinas A, Vila L, Piraux L (2004) J Phys Condens Matter 16(22):S2279

    Article  CAS  Google Scholar 

  27. 27.

    Ren Y, Wang JB, Liu QF, Zhang B, Han XH, Xue DS (2009) J Phys D 42(10):105002

    Article  Google Scholar 

  28. 28.

    Vila L, Darques M, Encinas A, Ebels U, George J-M, Faini G, Thiaville A, Piraux L (2009) Phys Rev B 79(17):172410

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC of China (Grant No. 10774061) and Program for New Century Excellent Talents (NCET) in University. Many thanks to the support from Hitachi S-4800 FE-SEM laboratory of Electron Microscope, School of Physical Science and Technology, Lanzhou University. We also acknowledge the support from the CMMM and HPC Center at Lanzhou University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianbo Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ren, Y., Wang, J., Liu, Q. et al. Tailoring coercivity and magnetic anisotropy of Co nanowire arrays by microstructure. J Mater Sci 46, 7545 (2011). https://doi.org/10.1007/s10853-011-5727-x

Download citation

Keywords

  • Magnetic Anisotropy
  • Nanowire Array
  • Magnetocrystalline Anisotropy
  • Anodic Aluminum Oxide Template
  • Shape Anisotropy