Skip to main content

Nanoscale volume diffusion

Diffusion in thin films, multilayers and nanoobjects (hollow nanoparticles)

Abstract

Diffusion on the nano/atomic scales in multilayers, thin films has many challenging features even if the role of structural defects (grain-boundaries, dislocations, etc.) can be neglected and 'only' the effects related to the nano/atomic scale raise. This can be the case for diffusion in amorphous materials, in epitaxial, highly ideal thin films, or multilayers where diffusion along short circuits can be ignored and 'only' fundamental difficulties related to nanoscale effects are important. The objective of this article is to review some interesting fundamental experimental and theoretical results in the field of nanoscale volume diffusion in planar and spherical geometries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Notes

  1. 1.

    This transformation can be done if both the initial and boundary conditions can also be expressed as the function of λ.

  2. 2.

    Although usually it is not explicitly declared, zv is included in \(\Upgamma\) in Eqs. 912. From Eq. 13, zv is not included in \(\Upgamma\).

  3. 3.

    It is worth mentioning that m′ = 2ZM/kBT log10e, where Z = zl + 2zv and e is the base of the natural logarithm. It also shows that M in Eq. 21 can be determined from diffusion experimental data.

References

  1. 1.

    Fick AE (1855) Ann Phys Chem 94:59

    Google Scholar 

  2. 2.

    Fick AE (1855) Phil Mag 10:30

    Google Scholar 

  3. 3.

    Crank J (1975) In: The mathmatics of diffusion. Oxford Univerity Press, Oxford

    Google Scholar 

  4. 4.

    Philibert J (1991) In: Atom movements: diffusion and mass transport in solids. Les Editions de Physique, Les Ulis

    Google Scholar 

  5. 5.

    Mehrer H (2007) In: Diffusion in solids. Springer-Verlag, Berlin

    Google Scholar 

  6. 6.

    Martin G (1990) Phys Rev B 41:2279

    CAS  Google Scholar 

  7. 7.

    Yip S (eds) (2005) In: Handbook of materials modeling. Springer, Dordrecht

    Google Scholar 

  8. 8.

    Stephenson G (1988) Acta Metall 36(10):2663

    CAS  Google Scholar 

  9. 9.

    Stephenson G (1993) Def Diff Forum 95(98):507

    Google Scholar 

  10. 10.

    Manning JR (1968) In: Diffusion kinetics for atoms in crystals D. Van Norstrand Company Inc., Princton

    Google Scholar 

  11. 11.

    Ghez R (2001) In: Diffusion phenomena. Kulwer Academic/Plenum Publishers, New York

    Google Scholar 

  12. 12.

    Erdélyi Z, Beke DL (2004) Phys Rev B 70:245428

    Google Scholar 

  13. 13.

    Cook H, de Fontaine D, Hilliard J (1969) Acta Metall 17:165

    Google Scholar 

  14. 14.

    Cahn J (1972) Acta Metall 9:795

    Google Scholar 

  15. 15.

    Yamautchi H, Hilliard J (1972) Scr Metall 6:909

    Google Scholar 

  16. 16.

    Tsakalakos T (1981) Thin Solid Films 86:79

    CAS  Google Scholar 

  17. 17.

    Tsakalakos T (1986) Scr Metall 20:471

    CAS  Google Scholar 

  18. 18.

    Memon E, de Fontaine D (1992) Scr Metall 27:395

    Google Scholar 

  19. 19.

    Erdélyi Z, Beke D, Nemes P, Langer G (1999) Phil Mag A 79:1757

    Google Scholar 

  20. 20.

    Mehrer, H (eds) (1990) In: Diffusion in solid metals and alloys, Landolt-Börnstein, New Series, vol III/26. Springer-Verlag, Berlin

    Google Scholar 

  21. 21.

    Beke, D (eds) (1999) In: Diffusion in semiconductors and non-metallic solids, Landolt-Börnstein, New Series, vol III/33. Springer-Verlag, Berlin

    Google Scholar 

  22. 22.

    Kube R, Bracht H, Hansen JL, Larsen AN, Haller E, Paul S, Lerch W (2010) J Appl Phys 10:073520

    Google Scholar 

  23. 23.

    Bracht H (2006) Physica B 367(377):11

    Google Scholar 

  24. 24.

    Bracht H, Haller E, Clarck-Phelps R (1998) Phys Rev Lett 81:393

    CAS  Google Scholar 

  25. 25.

    Silvestri HH, Bracht H, Hansen JL, Larsen AN, Haller EE (2006) Semicond Sci Technol 21:172103

    Google Scholar 

  26. 26.

    Hüger E, Tietze U, Lott D, Bracht H, Bougeard D, Haller EE, Schmidt H (2008) Appl Phys Lett 93:162104

    Google Scholar 

  27. 27.

    Erdélyi Z, Balogh Z, Beke D (2010) Acta Mater 58:5639

    Google Scholar 

  28. 28.

    Beke DL, Cserháti C, Erdélyi Z, Szabó IA (2003) In: Nanoclusters and nanocrystals. American Scientific Publ., Califronia

  29. 29.

    Csik A, Langer G, Beke D, Erdélyi Z, Menyhard M, Sulyok A (2001) J Appl Phys 89:804

    CAS  Google Scholar 

  30. 30.

    Tripathi S, Sharma A, Shripathi T (2009) Appl Surf Sci 256:489

    CAS  Google Scholar 

  31. 31.

    Erdélyi Z, Szabó IA, Beke DL (2002) Phys Rev Lett 89:165901

    Google Scholar 

  32. 32.

    Erdélyi Z, Sladecek M, Stadler LM, Zizak I, Langer G, Kis-Varga M, Beke D, Sepiol B (2004) Science 306:1913

    Google Scholar 

  33. 33.

    Erdélyi Z, Beke DL (2003) Phys Rev B 68:092102

    Google Scholar 

  34. 34.

    Roussel JM, Bellon P (2006) Phys Rev B 73:085403

    Google Scholar 

  35. 35.

    Klafter J, Sokolov I (2005) Phys World 18:29

    CAS  Google Scholar 

  36. 36.

    Philibert J (2009) Int J Mater Res 100:744

    CAS  Google Scholar 

  37. 37.

    Sokolov I, Klafter J, Blumen A (2002) Phys Today 55:48

    CAS  Google Scholar 

  38. 38.

    Erdélyi Z, Katona GL, Beke DL (2004) Phys Rev B 69:113407

    Google Scholar 

  39. 39.

    Beke DL, Erdélyi Z (2006) Phys Rev B (Condens Matter Mater Phys) 73:035426

    Google Scholar 

  40. 40.

    Katona GL, Erdélyi Z, Beke DL, Dietrich C, Weigl F, Boyen HG, Koslowski B, Ziemann P (2005) Phys Rev B 71:115432

    Google Scholar 

  41. 41.

    Erdélyi Z, Girardeaux C, Tőkei Z, Beke D, Cserháti C, Rolland A (2002) Surf Sci 496:129

    Google Scholar 

  42. 42.

    Balogh Z, Erdélyi Z, Beke D, Wiedwald U, Pfeiffer H, Tschetschetkin A, Ziemann P (2011) Thin Solid Film (in press)

  43. 43.

    Balogh Z, Erdélyi Z, Beke D, Langer G, Csik A, Boyen HG, Wiedwald U, Ziemann P, Portavoce A, Girardeaux C (2008) Appl Phys Lett 92:143104

    Google Scholar 

  44. 44.

    d’Heurle F, Gas P (1986) J Mater Res 1:205

    Google Scholar 

  45. 45.

    Gas P, d’Heurle F (1988) In: Landolt-Börnstein new series, vol III 33A. Springer, Beriln

    Google Scholar 

  46. 46.

    Nemouchi F, Mangelinck D, Berman C, Gas P (2005) Appl Phys Lett 86:041903

    Google Scholar 

  47. 47.

    Cserháti C, Balogh Z, Csik A, Langer G, Erdélyi Z, Glodán G, Katona G, Beke D, Zizak I, Darowski N, Dudzik E, Feyerherm R (2008) J Appl Phys 104:024311

    Google Scholar 

  48. 48.

    Portavoce A, Tréglia G (2010) Phys Rev B 82:205431

    Google Scholar 

  49. 49.

    Erdélyi Z, Beke DL, Taranovskyy A (2008) Appl Phys Lett 92:133110

    Google Scholar 

  50. 50.

    Beke D, Szabo I, Erdélyi Z, Opposits G (2004) Mater Sci Eng A 387(389):4

    Google Scholar 

  51. 51.

    Geguzin Y (1979) In: Diffusion zone. Nauka, Moscow

    Google Scholar 

  52. 52.

    Schmitz G, Ene C, Nowak C (2009) Acta Mater 57:2673

    CAS  Google Scholar 

  53. 53.

    Beke D, Kozéky L, Gödény I, Kedves F (1989) Def Diff Forum 66(69):1357

    Google Scholar 

  54. 54.

    Bokstein B, Bokstein S, Zsukhovicki A (1974) Metallurgica 66(69):169

    Google Scholar 

  55. 55.

    Nazarov AV, Gurov KP (1974) Fiz Metall Metalloved 37:496

    Google Scholar 

  56. 56.

    Beke DL, Erdélyi Z, Parditka B (2011) Def Diff Forum 309(310):113

    Google Scholar 

  57. 57.

    Erdélyi Z, Parditka B, Beke D (2011) Scr Mater 64:938

    Google Scholar 

  58. 58.

    Aldinger A (1974) Acta Metall 22:923

    CAS  Google Scholar 

  59. 59.

    Geguzin Y, Klinchuk Y, Yu I, Paritskaya L (1977) Fiz Met Metalloved 43:602

    CAS  Google Scholar 

  60. 60.

    Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711

    CAS  Google Scholar 

  61. 61.

    Yin Y, Erdonmez CK, Cabot A, Hughes S, Alivisatos AP (2006) Adv Func Matt 16:1389

    CAS  Google Scholar 

  62. 62.

    Wang CM, Baer D, Thomas L, Amonette J, Antony J, Qiang Y, Duscher G (2005) J Appl Phys 98:09430

    Google Scholar 

  63. 63.

    Nakamura R, Lee JG, Tokozakura D, Mori H, Nakajima H (2007) Matter Lett 61:1060

    CAS  Google Scholar 

  64. 64.

    Nakamura R, Tokozakura D, Nakajima H, Lee JG, Mori H (2007) J Apll Phys 101:074303

    Google Scholar 

  65. 65.

    Nakamura R, Lee JG, Mori H, Nakajima H (2008) Phil Mag 88:257

    CAS  Google Scholar 

  66. 66.

    Nakajima H, Nakamura R (2009) J Nano Res 7:1

    CAS  Google Scholar 

  67. 67.

    Tu KN, Gosele U (2005) Appl Phys Lett 86:093111

    Google Scholar 

  68. 68.

    Gusak AM, Zaporozhets T, Tu K, Gosele U (2005) Phil Mag 85:4445

    CAS  Google Scholar 

  69. 69.

    Belova I, Murch G (2005) J Phase Equil Diff 26:430

    CAS  Google Scholar 

  70. 70.

    Evteev A, Levchenko E, Belova I, Murch G (2007) Phil Mag 87:3787

    CAS  Google Scholar 

  71. 71.

    Tokozakura RND, Lee J, Mori H, Nakajima H (2008) Acta Mater 56:5276

    Google Scholar 

  72. 72.

    Gusak AM, Tu K (2008) Acta Mater 57:3367

    Google Scholar 

  73. 73.

    Evteev A, Levchenko E, Belova I, Murch G (2009) J Nano Res 7:11

    CAS  Google Scholar 

  74. 74.

    Evteev A, Levchenko E, Belova I, Murch G (2008) Phil Mag 88:1524

    Google Scholar 

  75. 75.

    Gusak AM, Zaporozhets TV (2009) Condens Matter 21:415303

    CAS  Google Scholar 

  76. 76.

    Glodan G, Cserhati C, Beszeda I, Beke DL (2010) Appl Phys Lett 97:113109

    Google Scholar 

  77. 77.

    Singh A, Basu A, Bhatt P, Poswal A (2009) Phys Rev B 79:195435

    Google Scholar 

  78. 78.

    Knaepen W, Demeulemeester J, Deduytsche D, Jordan-Sweet J, Vantomme A, Meirhaeghe RV, Detavernier C, Lavoie C (2010) Microelect Eng 87:258

    CAS  Google Scholar 

  79. 79.

    Sterns MB (1988) Phys Rev B 38:8109

    Google Scholar 

  80. 80.

    Fullerton EE, Schuller IK, Vanderstraeten H, Bruynseraede Y (1992) Phys Rev B 45:9292

    CAS  Google Scholar 

  81. 81.

    DuMond J, Youtz J (1940) J Appl Phys 11:357

    CAS  Google Scholar 

  82. 82.

    Gupta A, Gupta M, Chakravarty S, Ruffer R, Wille HC, Leupold O (2005) Phys Rev B 72:014207

    Google Scholar 

  83. 83.

    Gupta A, Gupta M, Pietsch U, Ayachit S, Rajagopalanl S, Balamurgan A, Tyagi A (204) J Non-Cryst Solids 343:39

  84. 84.

    Speakman J, Rose P, Hunt J, Cowlam N, Somekh R, Greer A (1996) J Magn Magn Mater 156:411

    CAS  Google Scholar 

  85. 85.

    Schmidt H, Gupta M, Bruns M (2006) Phys Rev Lett 96:055901

    CAS  Google Scholar 

  86. 86.

    Gupta M, Gupta A, Stahn J, Horisberger M, Gutberlet T, Allenspach P (2004) Phys Rev B 70:184206

    Google Scholar 

  87. 87.

    Parratt LG (1954) Phys Rev 95:359

    Google Scholar 

  88. 88.

    Singh S, Basu S, Gupta M, Majkrzak CF, Kienzle PA (2010) Phys Rev B 81:235413

    Google Scholar 

  89. 89.

    Cekada M, Panjan M, Cimpric D, Kovac J, Panjan P, Dolinsek J, Zalar A (2010) Vacuum 84:147

    Google Scholar 

  90. 90.

    Lakatos A, Langer GA, Csik A, Cserháti C, Kis-Varga M, Daróczi L, Katona GL, Erdélyi Z, Erdélyi G, Vad K, Beke DL (2010) Appl Phys Lett 97(23):233103

    Google Scholar 

  91. 91.

    Batterman B (1969) Phys Rev Lett 22:703

    CAS  Google Scholar 

  92. 92.

    Anderson S, Golovchenko J, Mair G (1976) Phys Rev Lett 37:1141

    Google Scholar 

  93. 93.

    Cowan P, Golovchenko J, Robbins M (1980) Phys Rev Lett 44:1680

    CAS  Google Scholar 

  94. 94.

    Erko A, Zizak I (2009) Spectrochim Acta Part B Atom Spectrosc 64:833

    Google Scholar 

  95. 95.

    Erko A, Veldkamp M, Gudat W, Abrosimov N, Rossolenko S, Shekhtman V, Khasanov S, Alex V, Groth S, Schröder W, Vidal B, Yakshin A (1998) J Synchrotron Radiat 5:239

    CAS  Google Scholar 

  96. 96.

    Ghose S, Dev B, Gupta A (2001) Phys Rev B 64:233

    Google Scholar 

  97. 97.

    Ghose S, Dev B (2001) Phys Rev B 63:245409

    Google Scholar 

  98. 98.

    Gupta A, Kumar D, Phatak V (2010) Phys Rev B 81:155402

    Google Scholar 

  99. 99.

    Erdélyi Z, Cserháti C, Csik A, Daróczi L, Langer G, Balogh Z, Varga M, Beke D, Zizak I, Erko A (2009) X-ray Spectrom 38:338

    Google Scholar 

  100. 100.

    Gupta A, Rajput P, Saraiya A, Reddy VR, Gupta M, Bernstorff S, Amenitsch H (2005) Phys Rev B 72:075436

    Google Scholar 

  101. 101.

    Schlesiger R, Oberdorfer C, Wurz R, Greiwe G, Stender P, Artmeier M, Pelka P, Spaleck F, Schmitz G (2010) Rev Sci Instrum 81:043703

    Google Scholar 

  102. 102.

    Stender P, Balogh Z, Schmitz G (2011) Phys Rev B 83:121407

    Google Scholar 

  103. 103.

    Cojocaru-Mirédin O, Cadel E, Blavette D, Mangelinck D, Hoummada K, Genevois C, Deconihout B (2009) Ultramicroscopy 109:797

    Google Scholar 

  104. 104.

    Adusumilli P, Lauhon LJ, Seidman DN, Murray CE, Avayu O, Rosenwaks Y (2009) Appl Phys Lett 94:113103

    Google Scholar 

Download references

Acknowledgements

This study was supported by the OTKA Board of Hungary (Nos K67969, CK80126) and by TAMOP 4.2.1./B-09/1/KONV-2010-0007 project (implemented through the New Hungary Development Plan co-financed by the European Social Fund, and the European Regional Development Fund). One of the authors (Z. Erdélyi) of this article is a grantee of the ‘Bolyai János’ scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zoltán Erdélyi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erdélyi, Z., Beke, D.L. Nanoscale volume diffusion. J Mater Sci 46, 6465–6483 (2011). https://doi.org/10.1007/s10853-011-5720-4

Download citation

Keywords

  • Composition Dependence
  • Composition Profile
  • Atom Probe Tomography
  • Kinetic Monte Carlo
  • Jump Frequency