Skip to main content
Log in

Molecular-level analysis of shock-wave physics and derivation of the Hugoniot relations for soda-lime glass

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-equilibrium and equilibrium molecular dynamics simulations are employed to study the mechanical response of soda-lime glass (a material commonly used in transparent armor applications) when subjected to the loading conditions associated with the generation and propagation of planar shock waves. Particular attention is given to the identification and characterization of various (inelastic-deformation and energy-dissipation) molecular-level phenomena and processes taking place at the shock front. The results obtained revealed that the shock loading causes a 2–4% (shock strength-dependent) density increase. In addition, an increase in the average coordination number of the silicon atoms is observed along with the creation of smaller Si–O rings. These processes are associated with significant energy absorption and dissipation and are believed to control the blast/ballistic impact mitigation potential of soda-lime glass. This study was also aimed at the determination (via purely computational means) of the shock Hugoniot (i.e., a set of axial stress vs. density/specific-volume vs. internal energy vs. particle velocity vs. temperature) material states obtained in soda-lime glass after the passage of a shock wave of a given strength and on the comparison of the computed results with their experimental counterparts. The availability of a shock Hugoniot is critical for construction of a high deformation-rate, large-strain, high pressure material model which can be used within a continuum-level computational analysis to capture the response of a soda-lime glass-based laminated transparent armor structure (e.g., a military vehicle windshield, door window, etc.) to blast/ballistic impact loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Strassburger E, Patel P, McCauley W, Templeton DW (2005) In: Proceedings of the 22nd international symposium on ballistics, November 2005, Vancouver, Canada

  2. Fink BK (2004) AMPTIAC Q 8(4):991

    Google Scholar 

  3. Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Fountzoulas C, Patel P, Strassburger E (2008) Mater Sci Eng A 492(1):397

    Article  Google Scholar 

  4. Grujicic M, Pandurangan B, Bell WC, Coutris N, Cheeseman BA, Fountzoulas C, Patel P (2009) J Mater Eng Perform 18(8):1012

    Article  CAS  Google Scholar 

  5. Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Fountzoulas C, Patel P (2009) Int J Impact Eng 36:386

    Article  Google Scholar 

  6. Grujicic M, Bell WC, Glomski PS, Pandurangan B, Cheeseman BA, Fountzoulas C, Patel P (2010) J Mater Eng Perform. doi: https://doi.org/10.1007/s11665-010-9774-2

    Article  Google Scholar 

  7. Woodcock LV, Angell CA, Cheeseman P (1976) J Chem Phys 65:1565

    Article  CAS  Google Scholar 

  8. Valle RGD, Venuti E (1996) Phys Rev B 54(6):3809

    Article  Google Scholar 

  9. Trachenko K, Dove MT (2002) J Phys Condens Matter 14:7449

    Article  CAS  Google Scholar 

  10. Liang Y, Miranda CR, Scandolo S (2007) Phys Rev B 75:024205

    Article  Google Scholar 

  11. Nghiem B (1998) PhD thesis, University of Paris 6, France

  12. Denoual C, Hild F (2002) Eur J Mech Solids A 21:105

    Article  Google Scholar 

  13. Yazdchi M, Valliappan S, Zhang W (1996) Int J Numer Methods Eng 39:1555

    Article  Google Scholar 

  14. Hild F, Denoual C, Forquin P, Brajer X (2003) Comput Struct 81:1241

    Article  Google Scholar 

  15. Holmquist TJ, Templeton DW, Bishnoi KD (2001) Int J Impact Eng 25:211

    Article  Google Scholar 

  16. Camacho GT, Ortiz M (1996) Int J Solids Struct 33(20–22):2899

    Article  Google Scholar 

  17. Holian BL, Straub GK (1598) Phys Rev Lett 43:1979

    Google Scholar 

  18. Straub GK, Schiferl SK, Wallace DC (1983) Phys Rev B 28:312

    Article  CAS  Google Scholar 

  19. Klimenko VY, Dremin AN (1978) In: Breusov ON et al (eds) Detonatsiya, Chernogolovka. AkademiiNauk, Moscow, p 79

    Google Scholar 

  20. Holian BL, Hoover WG, Moran B, Straub GK (1980) Phys Rev A 22:2498

    Article  Google Scholar 

  21. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York, p 91

    Google Scholar 

  22. Alexander CS, Chhabildas LC, Reinhart WD, Templeton DW (2008) Int J Impact Eng 35:1376

    Article  Google Scholar 

  23. Sun H (1998) J Phys Chem B 102:7338

    Article  CAS  Google Scholar 

  24. Sun H, Ren P, Fried JR (1998) Comput Theor Polym Sci 8(1/2):229

    Article  CAS  Google Scholar 

  25. https://doi.org/www.accelrys.com/mstudio/msmodeling/visualiser.html

  26. https://doi.org/www.accelrys.com/mstudio/msmodeling/amorphouscell.html

  27. Grujicic M, Sun YP, Koudela KL (2007) Appl Surf Sci 253:3009

    Article  CAS  Google Scholar 

  28. https://doi.org/www.accelrys.com/mstudio/msmodeling/discover.html

  29. Theodorou DN, Suter UW (1986) Macromolecules 19:139

    Article  CAS  Google Scholar 

  30. Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, Berlin, Heidelberg

    Google Scholar 

  31. Allen MP, Tildesley DJ (1994) Computer simulations of liquids. Clarendon Press, New York

    Google Scholar 

  32. Grujicic M, Bell WC, Pandurangan B, Glomski PS (2010) J Mater Eng Perform. doi: https://doi.org/10.1007/s11665-010-9724-z

    Article  Google Scholar 

  33. Grujicic M, Bell WC, Pandurangan B, He T (2010) Mater Des 31(9):4050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The material presented in this article is based on study supported by the U.S. Army/Clemson University Cooperative Agreements W911NF-04-2-0024 and W911NF-06-2-0042 and by an ARC-TARDEC research contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Pandurangan, B., Bell, W.C. et al. Molecular-level analysis of shock-wave physics and derivation of the Hugoniot relations for soda-lime glass. J Mater Sci 46, 7298–7312 (2011). https://doi.org/10.1007/s10853-011-5691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5691-5

Keywords

Navigation