Skip to main content
Log in

PVC silver zeolite composites with antimicrobial properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(vinyl chloride) (PVC) composites containing increasing amounts (2–20%, w/w) of silver zeolite (SZ) were prepared by melt mixing and characterized by thermal, mechanical and rheological analyses. The addition of large amount of SZ did not influence the processability and the formability of the composites, if compared to neat plasticized PVC. The antibacterial activity of PVC SZ composites was tested on Escherichia coli and Staphylococcus epidermidis and resulted promising both in culture broth and on agar plate and also in sterile urine seeded with these strains, for simulation purposes. In sterile urine, composites induced a significant reduction (4–6 log units) of viability of both strains already at 24 h, inhibiting E. coli growth up to 20 days, whereas their antimicrobial action against S. epidermidis vanished within 5 days. The silver release in sterile urine was determined up to 20 days. It was found that the highest amount of silver ions was released during the first day (0.365 ppm), whilst from days 6 to 20 the silver release decreased, reaching a steady daily mean value of 0.02 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kenawy E-R, Worley SD, Broughton R (2007) Biomacromolecules 8:1359

    Article  CAS  Google Scholar 

  2. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, Rodrigues de Camargo E, Barros Barbosa D (2009) Int J Antimicrob Agents 34:103

    Article  CAS  Google Scholar 

  3. Francolini I, Donelli G, Stoodley P (2003) Rev Eviron Sci Biotechnol 2:307

    Article  CAS  Google Scholar 

  4. Appendini A, Hotchkiss JH (2002) Innov Food Sci Emerg Technol 3:113

    Article  CAS  Google Scholar 

  5. Imazato S (2003) Dent Mater 19:449

    Article  CAS  Google Scholar 

  6. Markarian J (2009) Plast Addit Compd 11:18

    Google Scholar 

  7. Seyfriedsberger G, Rametsteiner K, Kern W (2006) Eur Polym J 42:3383

    Article  CAS  Google Scholar 

  8. Zhang W, Luo Y, Wang H, Jiang J, Pu S, Chu PK (2008) Acta Biomater 4:2028

    Article  CAS  Google Scholar 

  9. La Storia A, Ercolini D, Marinello F, Mauriello G (2008) J Food Sci 73:T48

    Article  CAS  Google Scholar 

  10. Jeong SH, Yeo SY, Yi SC (2005) J Mater Sci 40:5407. doi:https://doi.org/10.1007/s10853-005-4339-8

    Article  CAS  Google Scholar 

  11. Yeo SY, Lee HJ, Jeong SH (2003) J Mater Sci 38:2143. doi:https://doi.org/10.1023/A:1023767828656

    Article  CAS  Google Scholar 

  12. Radheshkumar C, Munstedt H (2006) React Funct Polym 66:780

    Article  CAS  Google Scholar 

  13. Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A (2009) J Mater Sci Mater Med 20:2316

    Article  CAS  Google Scholar 

  14. Balazs DJ, Triandafillu K, Wood P, Chevolot Y, van Delden C, Harms H, Hollenstein C, Mathieu JH (2004) Biomaterials 25:2139

    Article  CAS  Google Scholar 

  15. Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljković JM, Djoković V, Luyt AS (2003) Chem Mater 15:5019

    Article  CAS  Google Scholar 

  16. Aumsuwan N, Heinhorst S, Urban MW (2007) Biomacromolecules 8:713

    Article  CAS  Google Scholar 

  17. Cho JW, So JH (2006) Mater Lett 60:2653

    Article  CAS  Google Scholar 

  18. Dowling DP, Betts AJ, Pope C, McConnell ML, Eloy R, Arnaud MN (2003) Surf Coat Technol 163–164:637

    Article  Google Scholar 

  19. Tunney MM, Gorman SP (2002) Biomaterials 60:4601

    Article  Google Scholar 

  20. Kumar R, Munstedt H (2005) Biomaterials 26:2081

    Article  CAS  Google Scholar 

  21. Southward RE, Thompson DW, St. Clair AK (1997) Chem Mater 9:501

    Article  CAS  Google Scholar 

  22. Blaker JJ, Nazhat SN, Boccaccini AR (2004) Biomaterials 25:1319

    Article  CAS  Google Scholar 

  23. Son WK, Youk JH, Park WH (2006) Carbohydr Polym 65:430

    Article  CAS  Google Scholar 

  24. Tambe SM, Sampath L, Modak SM (2001) J Antimicrob Chemother 47:589

    Article  CAS  Google Scholar 

  25. Silver S (2003) FEMS Microbiol Rev 27:341

    Article  CAS  Google Scholar 

  26. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) J Antimicrob Chemother 54:1019

    Article  CAS  Google Scholar 

  27. Edwards-Jones V (2009) Lett Appl Microbiol 49:147

    Article  CAS  Google Scholar 

  28. Yamanaka M, Hara K, Kudo J (2005) Appl Environ Microbiol 71:7589

    Article  CAS  Google Scholar 

  29. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res A 52:662

    Article  CAS  Google Scholar 

  30. Favia P, Sardella E, Gristina R, d’Agostino R (2003) Surf Coat Technol 169–170:707

    Article  CAS  Google Scholar 

  31. Davenas J, Thevenard P, Philippe F, Arnaud MN (2002) Biomol Eng 19:263

    Article  CAS  Google Scholar 

  32. Dowling DP, Donnelly K, McConnell ML, Eloy R, Arnaud MN (2001) Thin Solid Films 398–399:602

    Article  Google Scholar 

  33. Gray JE, Norton PR, Alnouno R, Marolda CL, Valvano MA, Griffiths K (2003) Biomaterials 24:2759

    Article  CAS  Google Scholar 

  34. Liu Y-C, Lin L-H (2004) Electrochem Commun 6:1163

    Article  CAS  Google Scholar 

  35. AgION antimicrobial. https://doi.org/www.agion-tech.com. Accessed 3 Feb 2011

  36. Matsumura Y, Yoshikata K, Kunisaki S-I, Tsuchido T (2003) Appl Environ Microbiol 69:278

    Article  CAS  Google Scholar 

  37. Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) J Inorg Biochem 92:37

    Article  CAS  Google Scholar 

  38. Trogolo JA (2005) Water Cond Purif 5:27. https://doi.org/www.wcponline.com/pdf/0505%20Clean%20Silver.pdf. Accessed 3 Feb 2011

  39. Quintavalla S, Vicini L (2002) Meat Sci 62:373

    Article  CAS  Google Scholar 

  40. Khare MD, Bukhari SS, Swann A, Spiers P, McLaren I, Myers J (2007) J Infect 54:146

    Article  Google Scholar 

  41. Loertzer H, Soukup J, Hamza A, Wicht A, Rettkowski O, Koch E, Fornara P (2006) Transpl Proc 38:707

    Article  CAS  Google Scholar 

  42. Rusin P, Brigth K, Gerba C (2003) Lett Appl Microbiol 36:69

    Article  CAS  Google Scholar 

  43. Cowan MM, Abshire KZ, Houk SL, Evans SN (2003) J Ind Microbiol Biotechnol 30:102

    Article  CAS  Google Scholar 

  44. Galeano B, Korff E, Nicholson W (2003) Appl Environ Microbiol 69:4329

    Article  CAS  Google Scholar 

  45. Casemiro LA, Martins CHG, de Carvalho Panzeri P, ires-de-Souza F, Panzeri H (2008) Gerodontology 25:187

    Article  Google Scholar 

  46. Abe Y, Ishii M, Takeuchi M, Ueshige M, Tanaka M, Akagawa Y (2004) J Oral Rehabil 31:568

    Article  CAS  Google Scholar 

  47. Hotta M, Nakajima H, Yamamoto K, Aono M (1998) J Oral Rehabil 25:485

    Article  CAS  Google Scholar 

  48. Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Dent Mater 16:452

    Article  CAS  Google Scholar 

  49. Nakane T, Gomyo H, Sasaki I, Kimoto Y, Hanzawa N, Teshima Y, Namba T (2006) Int J Cosmet Sci 28:299

    Article  CAS  Google Scholar 

  50. Montaudo G, Puglisi C (1991) Polym Degrad Stab 33:229

    Article  CAS  Google Scholar 

  51. Pehlivan H, Balköse D, Ülkü S, Tihminlioğlu F (2005) Compos Sci Technol 65:2049

    Article  CAS  Google Scholar 

  52. Fernández A, Soriano E, Hernández-Munoz P, Gavara R (2010) J Food Sci 75:E186

    Article  CAS  Google Scholar 

  53. Kaali P, Momcilovic D, Markström A, Aune R, Czel G, Karlsson S (2010) J Appl Polym Sci 95:1456

    CAS  Google Scholar 

  54. Kamışoğlu K, Aksoy EA, Akata B, Hasirci N, Bac N (2008) J Appl Polym Sci 110:2854

    Article  CAS  Google Scholar 

  55. Lee JH (2005) https://doi.org/exergencorporation.web.officelive.com/Documents/J%20Lee%20Antimicrobial%20Lab%20Study.pdf. Accessed 03 Feb 2011

  56. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Mycoses 50:265

    Article  CAS  Google Scholar 

  57. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Appl Environ Microbiol 75:2973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Council Research (CNR, Rome) and from a POR Project (Sicilian Regional funds, Misura 3.14, grant no. 1999.IT.16.1.PO.011/3.14/5.2.13/0279) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Zampino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zampino, D., Ferreri, T., Puglisi, C. et al. PVC silver zeolite composites with antimicrobial properties. J Mater Sci 46, 6734–6743 (2011). https://doi.org/10.1007/s10853-011-5629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5629-y

Keywords

Navigation