Skip to main content
Log in

Modeling of the wear behavior in A356–B4C composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, attempts were made to coat the boron carbide (B4C) powders with TiB2 via a sol–gel process. Different volume fraction of coated B4C particles were incorporated into the aluminum alloy by a mechanical stirrer and wear properties of unreinforced A356 alloy and composites with different vol% of coated B4C particles were experimentally investigated. Further study was carried out on the performance of artificial neural network (ANN) in prediction of the composites wear behavior. The finite element technique was implemented to obtain two of the inputs, cooling rate and temperature gradient. It is observed that predictions of ANN are consistent with experimental measurements for A356 composite and considerable savings in terms of cost and time could be obtained by using neural network model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Samuel AM, Gotmare A, Samuel FH (1995) Compos Sci Technol 53:301

    Article  CAS  Google Scholar 

  2. Chung S, Hwang BH (1994) Tribol Int 27(5):307

    Article  CAS  Google Scholar 

  3. Mazahery A, Shabani MO, Salahi S (2011) Materials science and Technology. Maney Publishing, Leeds

    Google Scholar 

  4. Lim SC, Gupta M, Ren L, Kwok JKM (1999) J Mater Process Technol 89–90:591–596

    Article  Google Scholar 

  5. Bindumadhavan PN, Chia TK, Chandrasekaran M, Wah HK, Lam LN, Prabhakar O (2001) Mater Sci Eng A 315:217

    Article  Google Scholar 

  6. Roy M, Venkataraman B, Bhanuprasad VV, Mahajan YR, Sundararajan G (1992) Metall Trans A 23:2833

    Article  Google Scholar 

  7. Skolianos S, Kattamis TZ (1993) Mater Sci Eng A 163:107

    Article  Google Scholar 

  8. Surappa MK, Prasad SV, Rohatgi PK (1982) Wear 77:295

    Article  CAS  Google Scholar 

  9. Bindumadhavan PN, Wah HK, Prabhakar O (2001) Wear 248:112

    Article  CAS  Google Scholar 

  10. Kwok JKM, Lim SC (1999) Compos Sci Technol 59:55

    Article  CAS  Google Scholar 

  11. Das S, Mondal DP, Dixit G (2001) Metall Mater Trans A 32:633

    Article  Google Scholar 

  12. Viala JC, Bouix J, Gonzalez G, Esnouf C (1997) J Mater Sci 32:4559. doi:https://doi.org/10.1023/A:1018625402103

    Article  CAS  Google Scholar 

  13. Evans A, Marchi CS, Mortensen A (2003) Metal matrix composites in industry: an introduction and a survey. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  14. Blumenthal WR, Gray GT III, Claytor TN (1994) J Mater Sci 29:4567. doi:https://doi.org/10.1007/BF00376280

    Article  CAS  Google Scholar 

  15. Pyzik AJ, Aksay IA, Sarikaya M (1986) Mater Sci Res 21:45

    Google Scholar 

  16. Pyzik AJ, Aksay IA (1989) Processing of ceramic and metal matrix composites. Pergamon Press, New York, p 269

    Book  Google Scholar 

  17. Pyzik AJ, Beaman DR (1995) J Am Ceram Soc 78:305

    Article  CAS  Google Scholar 

  18. Rhee SK (1970) J Am Ceram Soc 53:386

    Article  CAS  Google Scholar 

  19. Hassan AM, Alrashdan A, Hayajneh MT, Mayyas AT (2009) J Mater Process Technol 209:894

    Article  CAS  Google Scholar 

  20. Karimzadeh F, Ebnonnasir A, Foroughi A (2006) Mater Sci Eng A 432:184

    Article  Google Scholar 

  21. Altinkok N, Koker R (2004) Mater Des 25:595

    Article  CAS  Google Scholar 

  22. Singh SK, Mahesh K, Gupta AK (2010) Mater Des 31:2288

    Article  CAS  Google Scholar 

  23. Lisboa PJ, Taktak AFG (2006) Neural Netw 19:408

    Article  Google Scholar 

  24. Ostad Shabani M, Mazahery A (2011) Int J Appl Math Mech 7:89

    Google Scholar 

  25. Rashidi AM, Eivani AR, Amadeh A (2009) Comput Mater Sci 45:499

    Article  CAS  Google Scholar 

  26. Mousavi Anijdan SH, Bahrami A, Madaah Hosseini HR, Shafyei A (2006) Mater Des 27:605

    Article  Google Scholar 

  27. Hwang R-C, Chen Y-J, Huang H-C (2010) Expert Syst Appl 37:3136

    Article  Google Scholar 

  28. Fratini L, Buffa G, Palmeri D (2009) Comput Struct 87:1166

    Article  Google Scholar 

  29. Hamzaoui R, Cherigui M, Guessasm S, ElKedim O, Fenineche N (2009) Mater Sci Eng B 163:17

    Article  CAS  Google Scholar 

  30. Reddy NS, Prasada Rao AK, Chakraborty M, Murty BS (2005) Mater Sci Eng A 391:131

    Article  Google Scholar 

  31. Lloyd DJ, Chamberian B (1988) Cast reinforced metal composites. ASM, Illinois, p 263

    Google Scholar 

  32. Ray S (1988) In: Proceedings of the survey on fabrication methods of cast reinforced metal composites, p 77, ASM/TMS, 1988

  33. Rana F, Stefanescu DM (1989) Metall Mater Trans A 20:1564

    Article  Google Scholar 

  34. Nagarajan S, Dutta B (1999) Compos Sci Technol 59:897

    Article  CAS  Google Scholar 

  35. Zhou W, Xu ZM, Mater J (1997) Process Technol 63:358

    Article  Google Scholar 

  36. Ludema KC (1984) Wear 100:315

    Article  CAS  Google Scholar 

  37. Lim SC, Ashby MF (1987) Acta Metall 35:l

    Google Scholar 

  38. Razavizadeh K, Tyre TS (1982) Wear 79:325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ostad Shabani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabani, M.O., Mazahery, A. Modeling of the wear behavior in A356–B4C composites. J Mater Sci 46, 6700–6708 (2011). https://doi.org/10.1007/s10853-011-5623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5623-4

Keywords

Navigation