Skip to main content
Log in

Effects of current intensity and cumulative exposure time on the localized current-activated sintering of titanium nickelides

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article discusses the processing and properties of titanium nickelides locally sintered via Current-Activated Tip-based Sintering (CATS), a new localized sintering process. One of the advantages of CATS is the ability to apply orders of magnitude higher current densities than conventionally possible, which can promote rapid sintering and phase transformation rates. Mechanically alloyed equi-atomic Ni–Ti powder was for the first time tip sintered at varying current intensities and cumulative current exposure time. The effect of current-control processing conditions on the evolution of the locally sintered Ni–Ti microstructure and properties are discussed. The size of the locally sintered process zone was found to increase with cumulative current exposure time. The degree of sintering, phase transformations, and properties were found to depend on the current intensity, cumulative current exposure time and distance away from the tip/compact interface. Fully/near fully dense material was achieved rapidly at locations exposed to the highest current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jin JL, Chi YH (2002) Mater Sci Forum 394–395:241

    Article  Google Scholar 

  2. Zhang L, Xie C, Wu J (2006) Mater Sci Eng A438–440:905

    Article  Google Scholar 

  3. Vermaut Ph, Ochin P, Dezellus A, Plaindoux Ph, Dalle F, Muguerra Ph, Portier R (2002) Mater Science Forum 394–395:483

    Article  Google Scholar 

  4. Cheng X, Li Z, Xiang G (2007) J Mater Design 28(7):2218

    Article  CAS  Google Scholar 

  5. Li Z, Xiang G, Cheng X (2006) J Mater Design 27(4):324

    Article  CAS  Google Scholar 

  6. Hey JC, Jardine AP (1994) Mater Sci Eng A188(1–2):291

    Article  CAS  Google Scholar 

  7. Takasaki A (1998) Phys Stat Sol A 169:183

    Article  CAS  Google Scholar 

  8. Schuller E, Krone L, Bram M, Buchkremer HP, Stover D (2004) J Mat-iss.u Werkstofftech 35(5):326

    Article  Google Scholar 

  9. Zhang N, Babayan Khosrovabadi P, Lindenhovius JH, Kolster BH (1992) J Mater Sci Eng A150(2):263

    Article  CAS  Google Scholar 

  10. McNeese MD, Lagoudas DC, Pollock TC (2000) J Mater Sci Eng A 280(2):334

    Article  Google Scholar 

  11. Fu YQ, Gu YW, Shearwood C, Luo JK, Flewitt AJ, Milne WI (2006) J Nanotechnology 17(21):5293

    Article  CAS  Google Scholar 

  12. Morsi K, Patel VV, Moon KS, Garay JE (2008) J Mater Sci 43(12):4050. doi:https://doi.org/10.1007/s10853-007-2225-2

    Article  CAS  Google Scholar 

  13. Munir ZA, Anselmi-Tamburini U (2006) J Mater Sci 41(3):763. doi:https://doi.org/10.1007/s10853-006-6555-2

    Article  CAS  Google Scholar 

  14. Grasso S, Sakka Y, Maizza G (2009) Sci Technol Adv Mater 10:053001

    Article  Google Scholar 

  15. Abadie J, Chaillet N, Lexcellent C, Bourjault A (1999) Proc SPIE Int Soc Opt Eng 3667:326

    CAS  Google Scholar 

  16. Yung KC, Zhu HH (2005) J Smart Mater Struct 14(2):337

    Article  CAS  Google Scholar 

  17. Schuller E, Krone L, Bram M, Buchkremer HP, Stover D (2005) J Mater Sci 40(16):4231. doi:https://doi.org/10.1007/s10853-005-2819-5

    Article  Google Scholar 

  18. Morsi K, Moon K, Kassegne S, Ugle R, Villar E (2009) Scripta Mater 60(9):745

    Article  CAS  Google Scholar 

  19. Morsi K, Moon KS, Current activated tip-based sintering, PCT/US2009/35616 (pending)

  20. Locci AM, Orrùb R, Cao G, Munir ZA (2003) Intermetallics 11:555

    Article  CAS  Google Scholar 

  21. Koch CC (1989) Ann Rev Mater Sci 19:121

    Article  CAS  Google Scholar 

  22. Suryanarayana C (2001) Prog Mater Sci 46:1

    Article  CAS  Google Scholar 

  23. Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Mater Sci Eng A394:1332

    Google Scholar 

  24. Zoz H, Ernst D, Ahn IS, Kwon WH (1997) In: Ward-Close CM, Froes FH, Cho SS, Chellman DJ (eds) Synthesis/processing of lightweight metallic materials. TMS, Warrendale

  25. Otsuka K, Wayman CM (1988) Shape memory materials. Cambridge University Press, Cambridge

  26. Bertheville B, Bidaux J-E (2005) Scripta Mater 52:507

    Article  CAS  Google Scholar 

  27. Shearwood C, Fu YQ, Yu L, Khor KA (2005) Scripta Mater 52:455

    Article  CAS  Google Scholar 

  28. Schuller E, Bram M, Buchkremer HP, Stover D (2004) Mater Sci Eng A378:165

    Article  CAS  Google Scholar 

  29. Bram M, Ahmad-Khanlou A, Heckmann A, Fuchs B, Buchkremer HP, Stover D (2002) Mater Sci Eng A337:254

    Article  CAS  Google Scholar 

  30. Krone L, Schuller E, Bram M, Hamed O, Buschkremer H-P, Stover D (2004) Mater Sci Eng A378:185

    Article  CAS  Google Scholar 

  31. Ye LL, Liu ZG, Raviprasad K, Quan MX, Umemoto M, Hu ZQ (1998) Mater Sci Eng A241:290

    Article  CAS  Google Scholar 

  32. Luo H, Shan F, Huo Y, Wang Y (1999) Thin Solid Films 339:305

    Article  CAS  Google Scholar 

  33. Frenzel J, George EP, Dlouhy A, Somsen Ch, Wagner MF-X, Eggeler G (2010) Acta Mater 58:3444

    Article  CAS  Google Scholar 

  34. Hiraga H, Inoue T, Shimura H, Matsunawa A (1999) Wear 231:272

    Article  CAS  Google Scholar 

  35. Tan L, Crone WC (2002) Acta Mater 50:4449

    Article  CAS  Google Scholar 

  36. Conrad H (2002) Mater Sci Eng A287:227

    Google Scholar 

  37. Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Acta Mater 51(15):4487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to Dr. Steve Barlow and Ms. Joan Kimbrough for their help with electron microscopy and XRD. Thanks are also to Mr. Greg Morris and Mr. Mike Lester for general technical support. The authors also wish to thank The National Science Foundation (CMMI division: grant no. 0826532) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Morsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, M., Moon, K.S., Kassegne, S.K. et al. Effects of current intensity and cumulative exposure time on the localized current-activated sintering of titanium nickelides. J Mater Sci 46, 6690–6699 (2011). https://doi.org/10.1007/s10853-011-5622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5622-5

Keywords

Navigation