Skip to main content

Quantifying nanoparticle dispersion: application of the Delaunay network for objective analysis of sample micrographs

Abstract

Measuring quantitatively the nanoparticle dispersion of a composite material requires more than choosing a particular parameter and determining its correspondence to good and bad dispersion. It additionally requires anticipation of the measure’s behaviour towards imperfect experimental data, such as that which can be obtained from a limited number of samples. It should be recognised that different samples from a common parent population can give statistically different responses due to sample variation alone and a measure of the likelihood of this occurring allows a decision on the dispersion to be made. It is also important to factor into the analysis the quality of the data in the micrograph with it: (a) being incomplete because some of the particles present in the micrograph are indistinguishable or go unseen; (b) including additional responses which are false. With the use of our preferred method, this article investigates the effects on the measured dispersion quality of nanoparticles of the micrograph’s magnification settings, the role of the fraction of nanoparticles visible and the number of micrographs used. It is demonstrated that the best choice of magnification, which gives the clearest indication of dispersion type, is dependent on the type of nanoparticle structure present. Furthermore, it is found that the measured dispersion can be modified by particle loss, through the limitations of micrograph construction, and material/microscope imperfections such as cut marks and optical aberrations which could lead to the wrong conclusions being drawn. The article finishes by showing the versatility of the dispersion measure by characterising various different spatial features.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Song YS, Youn JR (2005) Carbon 43:1378. doi:10.1016/j.carbon.2005.01.007

    Article  CAS  Google Scholar 

  2. Kinloch AJ, Taylor AC (2006) J Mater Sci 41:3271. doi:10.1007/s10853-005-5472-0

    Article  CAS  Google Scholar 

  3. Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119. doi:10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  4. Paul DR, Robeson LM (2008) Polymer 49:3187. doi:10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  5. Manjunatha CM, Taylor AC, Kinloch AJ, Sprenger S (2009) J Mater Sci 44:4487. doi:10.1007/s10853-009-3653-y

    Article  CAS  Google Scholar 

  6. Chen CH, Jian JY, Yen FS (2009) Composites Part A-Appl S 40:463. doi:10.1016/j.compositesa.2009.01.010

    Article  Google Scholar 

  7. Gershon A, Cole D, Kota A, Bruck H (2010) J Mater Sci 45:6353. doi:10.1007/s10853-010-4597-y

    Article  CAS  Google Scholar 

  8. Luo ZP (2010) J Mater Sci 45:3228. doi:10.1007/s10853-010-4330-x

    Article  CAS  Google Scholar 

  9. Bakshi SR, Batista RG, Agarwal A (2009) Composites Part A-Appl S 40:1311. doi:10.1016/j.compositesa.2009.06.004

    Article  Google Scholar 

  10. Berndt S, Bretschneider J, Helm H, Stoyan D (1996) Mater Charact 36:93

    Article  CAS  Google Scholar 

  11. Davy PJ, Guild FJ (1988) P Roy Soc Lond A Mat 418:95

    Article  Google Scholar 

  12. Ghosh S, Nowak Z, Lee K (1997) Acta Mater 45:2215

    Article  CAS  Google Scholar 

  13. Li M, Ghosh S, Richmond O, Weiland H, Rouns TN (1999) Mater Sci Eng A 265:153

    Article  Google Scholar 

  14. Heijman MJGW, Benes NE, ten Elshof JE, Verweij H (2002) Mater Res Bull 37:141

    Article  CAS  Google Scholar 

  15. Hendriks MGHM, Heijman MJGW, van Zyl WE, ten Elshof JE, Verweij H (2002) J Am Ceram Soc 85:2097

    Article  CAS  Google Scholar 

  16. Al-Ostaz A, Diwakar A, Alzebdeh KI (2007) J Mater Sci 42:7016. doi:10.1007/s10853-006-1117-1

    Article  CAS  Google Scholar 

  17. Zhu Y, Allen GC, Adams JM, Gittins D, Heard PJ, Skuse DR (2010) Compos Struct 92:2203. doi:10.1016/j.compstruct.2009. 08.045

    Article  Google Scholar 

  18. Khare HS, Burris DL (2010) Polymer 51:719. doi:10.1016/j.polymer.2009.12.031

    Article  CAS  Google Scholar 

  19. Yazdanbakhsh A, Grasley Z, Tyson B, Abu Al-Rub RK (2011) Composites Part A-Appl S 42:75. doi:10.1016/j.physletb.2003.10.071

    Article  Google Scholar 

  20. Bray DJ, Gilmour SG, Guild FJ, Taylor AC (2010) In: Proceedings of the 3rd international conference of the ERCIM working group on computing & statistics. Elsevier, London, p 29

  21. Bray DJ, Gilmour SG, Guild FJ, Taylor AC (2011) J Roy Stat Soc C-App. Submitted

  22. Marcelpoil R, Usson Y (1992) J Theor Biol 154:359

    Article  Google Scholar 

  23. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48:530. doi:10.1016/j.polymer.2006.11.038

    Article  CAS  Google Scholar 

  24. Hsieh TH, Kinloch AJ, Masania K, Sohn Lee J, Taylor AC, Sprenger S (2010) J Mater Sci 45:1193. doi:10.1007/s10853-009-4064-9

    Article  CAS  Google Scholar 

  25. Dias A, Buono V, Vilela J, Andrade M, Lima T (1997) J Mater Sci 32:4715. doi:10.1023/A:1018618628027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EPSRC for providing research funding under the grant EP/H00582X and Nanoresins for supplying materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Bray.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bray, D.J., Gilmour, S.G., Guild, F.J. et al. Quantifying nanoparticle dispersion: application of the Delaunay network for objective analysis of sample micrographs. J Mater Sci 46, 6437–6452 (2011). https://doi.org/10.1007/s10853-011-5615-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5615-4

Keywords

  • Silica Nanoparticles
  • Area Fraction
  • Rubber Particle
  • Dispersion Quality
  • Voronoi Polygon