Skip to main content
Log in

Mesoscopic nonequilibrium thermodynamics treatment of the grain boundary thermal grooving induced by the anisotropic surface drift diffusion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A systematic study based on the self-consistent dynamical simulations is presented for the grain boundary thermal grooving problem by strictly following the irreversible thermodynamic theory of surfaces and interfaces with singularities [T. O. Ogurtani, J. Chem. Phys. 124, 144706 (2006)]. This approach furnishes us to have auto-control on the otherwise free-motion of the grain boundary triple junction without presuming any equilibrium dihedral (wetting) angles at the edges. The effects of physicochemical properties and the anisotropic surface diffusivity on the transient grooving behavior, which takes place at the early stage of the scenario, were considered. We analyzed the experimental thermal grooving data reported for tungsten in the literature, and compared them with the carried simulation results. This investigation showed that the observed changes in the dihedral angles are strictly connected to the transient behavior of the simulated global system, and manifest themselves at the early stage of the thermal grooving phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GB:

Grain boundary

TJ:

Triple junction

AFM:

Atomic force microscopy

WP:

Wetting parameter

BC:

Boundary conditions

References

  1. Tritscher P, Broadbridge P (1995) Proc R Soc Lond A 450:569

    Article  Google Scholar 

  2. Mullins WW (1957) J Appl Phys 28:333

    Article  CAS  Google Scholar 

  3. Gibbs W (1948) Thermodynamics, vol I. Yale University Press, New Haven

    Google Scholar 

  4. Murr LE (1975) Interfacial phenomena in metals and alloys. Addison-Wesley, Massachusetts

    Google Scholar 

  5. Young T (1805) Philos Trans R Soc Lond 95:65

    Article  Google Scholar 

  6. Rabkin E, Klinger L, Semenov V (2000) Acta Mater 48:1533

    Article  CAS  Google Scholar 

  7. Klinger L, Rabkin E (2001) Interface Sci 9:55

    Article  CAS  Google Scholar 

  8. Xin T, Wong H (2003) Acta Mater 51:2305

    Article  CAS  Google Scholar 

  9. Zhang W, Sachenko PP, Gladwell I (2004) Acta Mater 52:107

    Article  CAS  Google Scholar 

  10. Klinger LM, Chu X, Mullins WW, Bauer CL (1996) J Appl Phys 80:6670

    Article  CAS  Google Scholar 

  11. Nathan M, Glickman EE, Khenner M, Averbuch A, Israeli M (2000) Appl Phys Lett 77:3355

    Article  CAS  Google Scholar 

  12. Khenner M, Averbuch A, Israeli M, Nathan M, Glickman EE (2001) Comput Mater Sci 20:235

    Article  Google Scholar 

  13. Liu CY, Lee S, Chuang TJ (2001) Mater Sci Eng B Solid 86:101

    Article  Google Scholar 

  14. Wang WL, Lee S, Chuang TJ (2002) Philos Mag A 82:955

    Article  Google Scholar 

  15. Chuang TJ, Rice JR (1973) Acta Metall 21:1625

    Article  Google Scholar 

  16. Pharr G, Nix WD (1979) Acta Metall 27:1615

    Article  CAS  Google Scholar 

  17. Martinez L, Nix WD (1982) Metall Trans A 13:427

    Article  Google Scholar 

  18. Igic P, Mawby PA (1999) Solid State Electron 43:255

    Article  CAS  Google Scholar 

  19. Ogurtani TO (2006) J Chem Phys 124:144706

    Article  Google Scholar 

  20. Ogurtani TO, Oren EE (2005) Int J Solids Struct 42:3918

    Article  Google Scholar 

  21. Ogurtani TO (2006) Phys Rev B 73:235408

    Article  Google Scholar 

  22. Oren EE, Ogurtani TO (2002) In: Ozkan CS, Cammaratai RC, Freund LB, Gao H (eds) Thin films: stresses and mechanical properties IX, MRS symposia proceedings No. 695. Materials Research Society, Pittsburgh

  23. Ogurtani TO, Akyildiz O (2005) J Appl Phys 97:093520

    Article  Google Scholar 

  24. Ogurtani TO, Akyildiz O, Oren EE (2008) J Appl Phys 104(1):013518

    Article  Google Scholar 

  25. Ogurtani TO, Akyildiz O (2008) Int J Solids Struct 45:921

    Article  Google Scholar 

  26. Zhang W, Sachenko PP, Schneibel JH (2002) J Mater Res 17:1495

    Article  CAS  Google Scholar 

  27. Yeremin EN (1979) The foundations of chemical kinetics. MIR Publishers, Moscow

    Google Scholar 

  28. Ramasubramaniam A, Shenoy VB (2005) Acta Mater 53:2943

    Article  CAS  Google Scholar 

  29. Shewmon PG (1966) In: Margolin H (ed) Recrystallization, grain growth and textures. American Society for Metals, Metals Park, Ohio

    Google Scholar 

  30. Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York

    Google Scholar 

  31. Smith U, Kristensen N, Ericson F, Schweitz J (1991) J Vac Sci Technol A 9:2527

    Article  CAS  Google Scholar 

  32. Chen N, Li Z, Wang H, Sun J (2007) J Appl Phys 101:033535

    Article  Google Scholar 

  33. Ogurtani TO (2009) J Cryst Growth 311:1584

    Article  CAS  Google Scholar 

  34. Gao H (1991) Int J Solids Struct 28:703

    Article  Google Scholar 

  35. Binh V, Chaudier M, Couturier J, Uzan R, Drechsler M (1976) Surf Sci 57:184

    Article  Google Scholar 

  36. Robertson WM (1971) J Appl Phys 42:463

    Article  Google Scholar 

  37. Zhang W, Schneibel JH (1995) Comput Mater Sci 3:347

    Article  Google Scholar 

  38. Sachenko PP, Schneibel JH, Swadener JG, Zhang W (2000) Philos Mag Lett 80:627

    Article  CAS  Google Scholar 

  39. Gjostein NA (1963) In: Robertson WD, Gjostein NA (eds) Metal surfaces: structure, energetics and kinetics. American Society for Metals, Metals Park, Ohio

    Google Scholar 

  40. Ogurtani TO (2007) J Appl Phys 102:063517

    Article  Google Scholar 

  41. Prigogine I (1961) Thermodynamics of irreversible processes. Interscience Publisher, New York

    Google Scholar 

Download references

Acknowledgements

Thanks are due Dr. Aytac Celik of METU for his valuable comments on the article. We also thank the anonymous reviewer, who pointed out the critical role played by the angular averaging procedure in obtaining the effective isotropic failure time for comparison. This work was partially supported by the Turkish Scientific and Technological Research Council, TUBITAK through a research Grant No.107M011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Omer Ogurtani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akyildiz, O., Oren, E.E. & Ogurtani, T.O. Mesoscopic nonequilibrium thermodynamics treatment of the grain boundary thermal grooving induced by the anisotropic surface drift diffusion. J Mater Sci 46, 6054–6064 (2011). https://doi.org/10.1007/s10853-011-5567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5567-8

Keywords

Navigation