Skip to main content
Log in

Carbon-coated nano-sized LiFe1−xMnxPO4 solid solutions (0 ≤ x ≤ 1) obtained from phosphate–formate precursors

  • Size Dependent Effects
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

LiFe1−xMnxPO4 solid solutions in the whole concentration range (0 ≤ x ≤ 1) are obtained at 500 °C by a phosphate–formate precursor method. The method is based on the formation of homogeneous lithium–iron–manganese phosphate–formate precursors by freeze-drying of aqueous solutions containing Li(I), Fe(II), Mn(II), phosphate, and formate ions. Thermal treatment of the phosphate–formate precursors at temperatures at 500 °C yields nano-sized LiFe1−xMnxPO4 coated with carbon. The structure and the morphology of the LiFe1−xMnxPO4 compositions are studied by XRD, IR spectroscopy, and SEM analysis. The in situ formed carbon is analyzed by Raman spectroscopy. The electrochemical performance of LiFe1−xMnxPO4 is tested in model lithium cells using a galvanostatic mode. All LiFe1−xMnxPO4 compositions are characterized with an ordered olivine-type structure with a homogeneous Fe2+ and Mn2+ distribution in the 4c olivine sites. The morphology of LiFe1−xMnxPO4 consists of plate-like aggregates which are covered by in situ formed carbon. Inside the aggregates nano-sized isometric particles with narrow particles size distribution (between 60 and 100 nm) are visible. The structure of the deposited carbon presents a considerable disordered graphitic phase and does not depend on the Fe-to-Mn ratio. The solid solutions LiFe1−xMnxPO4 deliver a good reversible capacity due to the Fe2+/Fe3+ and Mn2+/Mn3+ redox-couples at 3.5 and 4.1 V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:1059

    Article  CAS  Google Scholar 

  2. Ong SP, Jain A, Hautier G, Kang B, Ceder G (2010) Electrochem Commun 12:427

    Article  CAS  Google Scholar 

  3. Chen G, Richardson TJ (2010) J Power Sources 195:1221

    Article  CAS  Google Scholar 

  4. Yamada A, Chung S-C (2001) J Electrochem Soc 148:A960

    Article  CAS  Google Scholar 

  5. Nakamura T, Sakumoto K, Okamoto M, Seki S, Kobayashi Y, Takeuchi T, Tabuchi M, Yamada Y (2007) J Power Sour 174:435

    Article  CAS  Google Scholar 

  6. Molenda J, Ojczyk W, Marzec J (2007) J Power Sour 174:689

    Article  CAS  Google Scholar 

  7. Kopec M, Yamada A, Kobayashi G, Nishimura S, Kanno R, Mauger A, Gendron F, Julien CM (2009) J Power Sour 189:1154

    Article  Google Scholar 

  8. Bramnik NN, Bramnik KG, Nikolowski K, Hinterstein M, Baehtz C, Ehrenberg H (2005) Electrochem Solid State Lett 8:A379

    Article  CAS  Google Scholar 

  9. Bini M, Mozzati MC, Galinetto P, Capsoni D, Ferrari S, Grandi MS, Massarotti V (2009) J Solid State Chem 182:1972

    Article  CAS  Google Scholar 

  10. Koleva V, Zhecheva E, Stoyanova R (2009) J Alloys Compd 476:950

    Article  CAS  Google Scholar 

  11. Koleva V, Stoyanova R, Zhecheva E (2009) Mater Chem Phys 121:370

    Article  Google Scholar 

  12. Zhecheva E, Mladenov M, Zlatilova P, Koleva V, Stoyanova R (2010) J Phys Chem Solids 71:848

    Article  CAS  Google Scholar 

  13. Koleva V, Stoyanova R, Zhecheva E (2010) Eur J Inorg Chem 127

  14. Koleva V, Zhecheva E, Stoyanova R (2010) Eur J Inorg Chem 4091

  15. Paques-Ledent MT, Tarte P (1972) Spectrochim Acta 29A:673

    Google Scholar 

  16. Burba C, Frech R (2006) Spectrochim Acta 65A:44

    Article  CAS  Google Scholar 

  17. Ait Salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Manger A, Julien CM (2006) Spectrochim Acta 65A:1007

    Article  CAS  Google Scholar 

  18. Tarte P, Rulmont A, Liégeois-Duyckaerts M, Cahay R, Winand JM (1991) Solid State Ionics 42:177

    Article  Google Scholar 

  19. Burba C, Frech R (2007) J Power Sour 172:870

    Article  CAS  Google Scholar 

  20. Meisel T, Halmos Z, Seybold K, Pungor E (1975) J Thermal Anal Calorim 7:73

    Article  CAS  Google Scholar 

  21. Langbein H, Christen S, Bonsdorf G (1999) Thermochim Acta 327:173

    Article  CAS  Google Scholar 

  22. Kenfack F, Langbein H (2005) Thermochim Acta 426:61

    Article  CAS  Google Scholar 

  23. Liu Y, Pan C, Wang J (2004) J Mater Sci 39:1091. doi:https://doi.org/10.1023/B:JMSC.0000012952.20840.09

    Article  CAS  Google Scholar 

  24. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126

    Article  CAS  Google Scholar 

  25. Robertson J (2002) J Non Cryst Solids 299–302:798

    Article  Google Scholar 

  26. Ferrari AC, Robertson J (2001) Phys Rev B64:075414

    Article  Google Scholar 

  27. Ferrari AC, Robertson J (2001) Phys Rev B61:14095

    Google Scholar 

  28. Palomares V, Goni A, Gil de Muro I, Meatza I, Bengoechea M, Cantero I, Rojo T (2010) J Power Sour 195:7661

    Article  CAS  Google Scholar 

  29. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Electrochem Solid State Lett 6:A207

    Article  CAS  Google Scholar 

  30. Maccario M, Croguennec L, Desbat B, Couzi M, Le Cras F, Servant L (2008) J Electrochem Soc 155:A879

    Article  CAS  Google Scholar 

  31. Ait Salah A, Mauger A, Zaghib K, Goudenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) J Electrochem Soc 153:A1692

    Article  CAS  Google Scholar 

  32. Doeff MM, Wilcox JD, Yu R, Aumentado A, Marcinek M, Kostecki R (2008) J Solid State Electrochem 12:995

    Article  CAS  Google Scholar 

  33. Van der Ven A, Wagemaker M (2009) Electrochem Commun 11:881

    Article  Google Scholar 

  34. Yamada A, Hosoya M, Chung S-C, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) J Power Sour 119–121:232

    Article  Google Scholar 

  35. Yamada A, Takei Y, Koizumi H, Sonoyama N, Kanno R, Itoh K, Yonemura M, Kamiyama T (2006) Chem Mater 18:804

    Article  CAS  Google Scholar 

  36. Nedoseykina T, Kim MG, Park S-A, Kim H-S, Kim S-B, Cho J, Lee Y (2010) Electrochim Acta 55:8876

    Article  CAS  Google Scholar 

  37. Fang H, Pan Z, Li L, Yang Y, Yan G, Li G, Wei S (2008) Electrochem Commun 10:1071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the financial support from the National Science Fund of Bulgaria (Ch1701/2007). Partial financial support by the National Centre for New Materials UNION (Contract No DCVP-02/2/2009) is also acknowledged. We are grateful of TIMCAL Company for providing carbon additives. The Raman equipment is used in the framework of project Integrated Research Centres at the Universities No DO02-167/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zhecheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoncheva, M., Koleva, V., Mladenov, M. et al. Carbon-coated nano-sized LiFe1−xMnxPO4 solid solutions (0 ≤ x ≤ 1) obtained from phosphate–formate precursors. J Mater Sci 46, 7082–7089 (2011). https://doi.org/10.1007/s10853-011-5555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5555-z

Keywords

Navigation