Skip to main content
Log in

Experimental studies on process-induced morphological characteristics of macro- and microstructures in laser consolidated alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Laser consolidation (LC) developed by National Research Council’s Industrial Materials Institute (NRC-IMI-London) since mid-1990s, is a laser cladding based rapid manufacturing and material additive process that could fabricate a “net-shape” functional metallic shape through a “layer-upon-layer” deposition directly from a computer aided design model without using molds or dies. In order to evaluate the LC processability of different materials, some representative nickel-based superalloys (IN-625, IN-718, IN-738, and Waspaloy), stainless steels (austenitic SS316L and martensitic SS420), and lightweight alloys (Ti–6Al–4V titanium alloy and Al-4047 aluminum alloy) have been investigated. Like other laser cladding based processes, due to process-induced rapid directional solidification, the LC alloys have demonstrated certain unique morphological characteristics. Moreover, the “as-consolidated” LC alloys, in nature, are in the “as-quenched” state, and some precipitation processes from their matrices, which are sometimes critical to the development of mechanical performance of the materials, could be effectively suppressed or retarded. Post-heat treatments, therefore, could necessarily facilitate the process of achieving their required operational microstructures. In this article, a comprehensive investigation was performed including metallurgical soundness and process-induced morphological characteristics of the LC materials, and microstructure development brought by post-LC heat treatments using optical microscope, scanning electron microscope, and X-ray diffraction. The implications on the mechanical performance of the LC materials were discussed as well in order to provide essential information for potential industrial applications of the LC materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Smugeresky JE, Keicher DM, Romero JA, Griffith ML, Harwell LD (1997) DOC Report #: SAND-97-8652C, USA

  2. Schlienger E, Dimos D, Griffith M, Michael J, Oliver M (1998) DOC Report #: SAND-98-0664C, USA

  3. Lewis GK, Nemec RB, Milewski JO, Thoma DJ, Barbe MR, Cremers DA (1994) In: ICALEO’94. LIA, Orlando, p 17

  4. Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) JOM 49(5):55

    Article  CAS  Google Scholar 

  5. Mazumder J (2000) JOM 52:28

    Article  Google Scholar 

  6. Abbott DH, Arcella FG (1998) Adv Mater Process 153(5):29

    CAS  Google Scholar 

  7. Murphy ML, Lee C, Steen WM (1993) In: ICALEO’93. LIA, Orlando, p 882

  8. Toyserkani E, Khajepour A, Corbin S (2005) Laser cladding. CRC Press, Boca Raton, p 2

    Google Scholar 

  9. McLean MA, Shannon GJ, Steen WM (1997) SPIE 3092:753

    CAS  Google Scholar 

  10. Hill R, Lewis GK (1998) In: Aerospace manufacturing technology conference and exposition: Session: Emerging Processes/Affordability—Part B. SAE, Long Beach

  11. Mazumder J, Dutta D, Kikuchi N, Ghosh S (2000) Opt Lasers Eng 34:397

    Article  Google Scholar 

  12. Choi J, Hua Y (2004) J Laser Appl 16(4):245

    Article  CAS  Google Scholar 

  13. Mazumder J (2004) US20040020625

  14. Nowotny S, Scharek S, Beyer E, Richter KH (2007) J Therm Spray Technol 16(3):344

    Article  CAS  Google Scholar 

  15. Huan Q, Prabhjot S, Naim AM (2008) CA2618926

  16. Toyserkani E, Khajepour A, Corbin S (2005) Laser cladding. CRC Press, Boca Raton, p 8

    Google Scholar 

  17. Costa L, Vilar R (2009) Rapid Prototyp J 15(4):264

    Article  Google Scholar 

  18. Xue L, Islam M (1998) In: ICALEO’98. LIA, Orlando, p Section E:15

  19. Xue L (2006) In: Session: Additive manufacturing in aerospace manufacturing and automated fastening conference and exhibition. Toulouse

  20. Xue L, Purcell CJ, Theriault A, Islam M (2001) In: ICALEO’01. LIA, Jacksonville, p 702

  21. Xue L, Chen J, Wang SH, Li Y (2009) In: ICALEO’09. LIA, Orlando, (Oral presentation only)

  22. Blackwell PL (2005) J Mater Process Technol 170:240

    Article  CAS  Google Scholar 

  23. Pinkerton AJ, Karadge M, Syed W, Li L (2006) J Laser Appl 18(3):216

    Article  CAS  Google Scholar 

  24. Wang L, Felicelli S, Pratt P (2008) Mater Sci Eng A 496:234

    Article  Google Scholar 

  25. Wu X, Liang J, Mei J, Mitchell C, Goodwin PS, Voice W (2004) Mater Des 25:137

    Article  CAS  Google Scholar 

  26. Kummailil J, Sammarco C, Skinner D, Brown CA, Rong K (2005) J Manuf Process 7(1):42

    Article  Google Scholar 

  27. Choi J, Chang Y (2005) Int J Machine Tools Manuf 45:597

    Article  Google Scholar 

  28. Chen J, Xue L (2010) Mater Sci Eng A 527:7318

    Article  Google Scholar 

  29. Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide, 2nd edn. ASM International, Materials Park, p 11

    Book  Google Scholar 

  30. International ASM (1991) ASM handbook, heat treating, vol 4. ASM International, Materials Park, p 770

    Google Scholar 

  31. Donachie MJ (2000) Titanium: a technical guide. ASM International, Materials Park, p 13

    Book  Google Scholar 

  32. Aluminium-Verlag Marketing and Kommunikation GmbH (1999) Aluminium handbook: fundamentals and materials, vol 1. Aluminium-Zentrale e.V, Düsseldorf, p 86

    Google Scholar 

  33. Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide, 2nd edn. ASM International, Materials Park, p 140

    Book  Google Scholar 

  34. Kahlen FJ, Kar A (2001) J Laser Appl 13(2):60

    Article  CAS  Google Scholar 

  35. Pryds NH (1997) Rapid solidification of the 12%Cr steel, Risø-R-992 (EN). Risø National Laboratory, Roskile, p 39

    Google Scholar 

  36. Marsden CF, West DRF, Steen WM (1987) In: Proceedings of LAMP’ 87. Osaka, Japan, p 401

  37. Pryds NH (1997) Rapid solidification of the 12%Cr steel, Risø-R-992 (EN). Risø National Laboratory, Roskile, p 29

    Google Scholar 

  38. Lee JH, Kim HC, Jo CY, Kim SK, Shin JH, Liu S, Trivedi R (2005) Mater Sci Eng A 413–414:306

    Article  Google Scholar 

  39. Antonsson T, Fredriksson H (2005) Metall Mater Trans B 36B:85

    Article  CAS  Google Scholar 

  40. Vilar R, Conde O, Colin D (1990) In: Sudarshan TS, Bhat DG (eds) Surface modification technologies III. Miner Metals Mater Soc, Warrendale, p 343

    Google Scholar 

  41. Colaco R, Vilar R (1997) Scr Mater 36(2):199

    Article  CAS  Google Scholar 

  42. Colaco R, Vilar R (1998) In: Sudarshan TS, Jeandin M, Khor KA (eds) Surface modification technologies XI. The Institute of Materials, London, p 600

    Google Scholar 

  43. Lin X, Yue TM (2005) Mater Sci Eng A 402:294

    Article  Google Scholar 

  44. Semiatin SL, Kobryn PA (2001) JOM 53:40

    Google Scholar 

  45. Bontha S, Klingbeil NW, Kobryn PA, Fraser HL (2006) J Mater Process Technol 178:135

    Article  CAS  Google Scholar 

  46. Lavernia EJ, Srivatsan TS (2010) J Mater Sci 45:287. doi:https://doi.org/10.1007/s10853-009-3995-5

    Article  CAS  Google Scholar 

  47. Xue L, Chen J, Islam M, Pritchard J, Manente D, Rush S (2000) In: ICALEO’ 00. LIA, Dearborn, p D.30

  48. ASM International (1980) Metals Handbook, vol 3 (9th edn), properties and selection: stainless steels, tool materials and special-purpose metals. ASM International, Materials Park, p 27

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge A. Theriault, A. Gillett, N. Santos, G. Wabersich, B. Gibson, A. Chen, and M. Meinert, NRC-IMI (London, ON), for their important contributions to the preparation of the LC specimens for metallurgical characterization and mechanical testing, and the authors are grateful to Dr. Jiaren (Jimmy) Jiang, NRC Institute for Fuel Cell Innovation (Vancouver, BC), for some useful discussion on rapid directional solidification of metals during the preparation of the manuscript as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Xue, L. & Wang, SH. Experimental studies on process-induced morphological characteristics of macro- and microstructures in laser consolidated alloys. J Mater Sci 46, 5859–5875 (2011). https://doi.org/10.1007/s10853-011-5543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5543-3

Keywords

Navigation