Skip to main content
Log in

High efficient As(III) removal by self-assembled zinc oxide micro-tubes synthesized by a simple precipitation process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) micro-tubes via self-assembly of nanoparticles were synthesized by a simple precipitation process. Removal of As(III) (arsenite) from water by ZnO micro-tubes through adsorption was investigated with both lab-prepared and natural water samples. The result showed that these self-assembled ZnO micro-tubes are effective to remove As(III) from both lab-prepared and natural water samples at near neutral pH environment. These ZnO micro-tubes have a high adsorption capability on As(III) at low As(III) concentration. When the equilibrium As(III) concentration was around 0.1 mg/L, the amount of As(III) adsorbed at equilibrium was over 10 mg/g. At high equilibrium concentration, the adsorption capacity of these ZnO micro-tubes on As(III) reached over 39.4 mg/g. These ZnO micro-tubes could provide a simple single-step treatment option to treat arsenic-contaminated natural water, which requires no pre-treatment or post-treatment pH adjustment for current industrial practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nordstrom D (2002) Science 296(5576):2143

    Article  CAS  Google Scholar 

  2. Amini M, Abbaspour K, Berg M, Winkel L, Hug S, Hoehn E, Yang H, Johnson C (2008) Environ Sci Technol 42(10):3669

    Article  CAS  Google Scholar 

  3. Smith A, Lingas E, Rahman M (2000) Bull World Health Organ 78:1093

    CAS  Google Scholar 

  4. Hopenhayn-Rich C, Biggs M, Smith A (1998) Int J Epidemiol 27(4):561

    Article  CAS  Google Scholar 

  5. Xia Y, Liu J (2004) Toxicology 198(1–3):25

    Article  CAS  Google Scholar 

  6. Saha K (2003) Crit Rev Environ Sci Technol 33(2):127

    Article  CAS  Google Scholar 

  7. Smith A, Lopipero P, Bates M, Steinmaus C (2002) Science 296(5576):2145

    Article  CAS  Google Scholar 

  8. US EPA (2000) Technologies and costs for removal of arsenic from drinking water. US Environmental Protection Agency, Washington

    Google Scholar 

  9. Mohan D, Pittman C (2007) J Hazard Mater 142(1–2):1

    Article  CAS  Google Scholar 

  10. Zhang G, Qu J, Liu H, Liu R, Li G (2007) Environ Sci Technol 41(13):4613

    Article  CAS  Google Scholar 

  11. Borho M, Wilderer P (1996) Water Sci Technol 34(9):25

    Article  CAS  Google Scholar 

  12. Lee H, Choi W (2002) Environ Sci Technol 36(17):3872

    Article  CAS  Google Scholar 

  13. Kim Y, Kim C, Choi I, Rengaraj S, Yi J (2004) Environ Sci Technol 38(3):924

    Article  CAS  Google Scholar 

  14. Edwards M (1994) J Am Water Works Assoc 86(9):64

    Article  CAS  Google Scholar 

  15. McNeill L, Edwards M (1995) J Am Water Works Assoc 87(4):105

    Article  CAS  Google Scholar 

  16. Hering J (1996) J Am Water Works Assoc 88(4):155

    Article  CAS  Google Scholar 

  17. Pande S, Deshpande L, Patni P, Lutade S (1997) J Environ Sci Health Part A 32(7):1981

    Google Scholar 

  18. Özgür Ü, Alivov Y, Liu C, Teke A, Reshchikov M, Doğan S, Avrutin V, Cho S, Morkoc H (2005) J Appl Phys 98:041301

    Article  Google Scholar 

  19. Meyer B, Alves H, Hofmann D, Kriegseis W, Forster D, Bertram F, Christen J, Hoffmann A, Straburg M, Dworzak M (2004) Phys Status Solidi (b) 241(2):231

    Article  CAS  Google Scholar 

  20. Pan Z, Dai Z, Wang Z (2001) Science 291(5510):1947

    Article  CAS  Google Scholar 

  21. Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292(5523):1897

    Article  CAS  Google Scholar 

  22. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H (2002) Adv Funct Mater 12(5):323

    Article  CAS  Google Scholar 

  23. Tian Z, Voigt J, Liu J, Mckenzie B, Mcdermott M, Rodriguez M, Konishi H, Xu H (2003) Nat Mater 2(12):821

    Article  CAS  Google Scholar 

  24. Iwasaki M, Inubushi Y, Ito S (1997) J Mater Sci Lett 16(18):1503

    Article  CAS  Google Scholar 

  25. Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) J Mater Res 10(1):77

    Article  Google Scholar 

  26. Milosevic O, Uskokovic D (1993) Mater Sci Eng A 168(2):249

    Article  Google Scholar 

  27. Chen D, Jiao X, Cheng G (1999) Solid State Commun 113(6):363

    Article  CAS  Google Scholar 

  28. Li W, Shi E, Tian M, Zhong W (1998) Sci China Ser E Technol Sci 41(5):449

    Article  CAS  Google Scholar 

  29. Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Chem Mater 14(10):4172

    Article  CAS  Google Scholar 

  30. Yao B, Chan Y, Wang N (2002) Appl Phys Lett 81:757

    Article  CAS  Google Scholar 

  31. Yamabi S, Imai H (2002) J Mater Chem 12(12):3773

    Article  CAS  Google Scholar 

  32. Hu J, Bando Y (2003) Appl Phys Lett 82:1401

    Article  CAS  Google Scholar 

  33. Li Q, Kumar V, Li Y, Zhang H, Marks T, Chang R (2005) Chem Mater 17(5):1001

    Article  Google Scholar 

  34. Hristovski K, Baumgardner A, Westerhoff P (2007) J Hazard Mater 147(1–2):265

    Article  CAS  Google Scholar 

  35. Pena M, Korfiatis G, Patel M, Lippincott L, Meng X (2005) Water Res 39(11):2327

    Article  CAS  Google Scholar 

  36. Barrett C, Massalski TB (1966) Structure of metals. McGraw Hill, New York

    Google Scholar 

  37. Sa Y, Aktay Y (2002) Biochem Eng J 12(2):143

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program of China, Grant No. 2006CB601201, the Knowledge Innovation Program of Chinese Academy of Sciences, Grant No. Y0N5711171, and the Knowledge Innovation Program of Institute of Metal Research, Grant No. Y0N5A111A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Li, Q., Gao, S. et al. High efficient As(III) removal by self-assembled zinc oxide micro-tubes synthesized by a simple precipitation process. J Mater Sci 46, 5851–5858 (2011). https://doi.org/10.1007/s10853-011-5542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5542-4

Keywords

Navigation