Skip to main content
Log in

Compositional and metal-insulator transition characteristics of sputtered vanadium oxide thin films on yttria-stabilized zirconia

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) thin films have been shown to undergo a rapid electronic phase transition near 70 °C from a semiconductor to a metal, making it an interesting candidate for exploring potential application in high speed electronic devices such as optical switches, tunable capacitors, and field effect transistors. A critical aspect of lithographic fabrication in devices utilizing electric field effects in VO2 is the ability to grow VO2 over thin dielectric films. In this article, we study the properties of VO2 grown on thin films of Yttria-Stabilized Zirconia (YSZ). Near room temperature, YSZ is a good insulator with a high dielectric constant (\(\epsilon _{\rm r} > 25\)). We demonstrate the sputter growth of polycrystalline VO2 on YSZ thin films, showing a three order resistivity transition near 70 °C with transition and hysteresis widths of approximately 7 °C each. We examine the relationship between chemical composition and transition characteristics of mixed phase vanadium oxide films. We investigate changes in composition induced by low temperature post-deposition annealing in oxidizing and reducing atmospheres, and report their effects on electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berglund CN, Guggenheim HJ (1969) Phys Rev 185:1022

    Article  CAS  Google Scholar 

  2. Goodenough JB (1971) J Solid State Chem 3:490

    Article  CAS  Google Scholar 

  3. Morin FJ (1959) Phys Rev Lett 3:34

    Article  CAS  Google Scholar 

  4. Zylbersztejn A, Mott NF (1975) Phys Rev 11:4383

    Article  CAS  Google Scholar 

  5. Cavalleri A et al. (2001) Phys Rev Lett 87:237401

    Article  CAS  Google Scholar 

  6. Qazilbash MM et al. (2007) Science 318:1750

    Article  CAS  Google Scholar 

  7. Sakai J et al. (2008) Phys Rev B 78:033106

    Article  Google Scholar 

  8. Stefanovich G et al. (2000) J Phys Condens Matter 12:8837

    Article  CAS  Google Scholar 

  9. Kim HT et al. (2004) New J Phys 6:52

    Article  Google Scholar 

  10. Okimura K, Sakai J (2007) Jpn J Appl Phys 46:813

    Article  Google Scholar 

  11. Ko C, Ramanathan S (2008) Appl Phys Lett 93:252101

    Article  Google Scholar 

  12. Ruzmetov D et al. (2009) J Appl Phys 106:083702

    Article  Google Scholar 

  13. Ruzmetov D et al. (2007) J Appl Phys 102:113715

    Article  Google Scholar 

  14. Ruzmetov D et al. (2010) J Appl Phys 107:114516

    Article  Google Scholar 

  15. Lee JS et al. (2007) Appl Phys Lett 90:015907

    Google Scholar 

  16. Lee JS et al. (2007) Appl Phys Lett 91:133509

    Article  Google Scholar 

  17. Gopalakrishnan G et al. (2009) J Mater Sci 44:5345. doi:https://doi.org/10.1007/s10853-009-3442-7

    Article  CAS  Google Scholar 

  18. Gupta A et al. (2009) Appl Phys Lett 95:111915

    Article  Google Scholar 

  19. Chae BG et al. (2004) J Korean Phys Soc 44:884

    CAS  Google Scholar 

  20. Zhu J, Liu JG (2003) Mater Lett 57:4297

    Article  CAS  Google Scholar 

  21. Norian KH, Hazell LB (1978) Thin Solid Films 54:L9

    Article  Google Scholar 

  22. Krishna MG et al. (1997) Thin Solid Films 312:116

    Article  Google Scholar 

  23. Sawatzky GA, Post D (1979) Phys Rev B 20:1546

    Article  CAS  Google Scholar 

  24. Demeter M et al. (2000) Surf Sci 454:41

    Article  Google Scholar 

  25. Youn DH et al. (2004) J Vac Sci Technol A 22:719

    Article  CAS  Google Scholar 

  26. Youn DH et al. (2004) J Appl Phys 95:1407

    Article  CAS  Google Scholar 

  27. Yun SJ et al. (2008) Electrochem Solid State Lett 1:H173

    Article  Google Scholar 

  28. Yang Z et al. (2010) Phys Rev B 82:205101

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yanjie Cui and Kian Kerman for technical assistance as well as Zheng Yang for valuable discussions. We acknowledge NSF supplement PHY-0601184 for financial support. Device fabrication was performed, in part, at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN) which is supported by NSF Award No. ECS-0335765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokul Gopalakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalakrishnan, G., Ramanathan, S. Compositional and metal-insulator transition characteristics of sputtered vanadium oxide thin films on yttria-stabilized zirconia. J Mater Sci 46, 5768–5774 (2011). https://doi.org/10.1007/s10853-011-5532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5532-6

Keywords

Navigation