Skip to main content
Log in

Photovoltaic properties and photoconductivity in multilayer Ge/Si heterostructures with Ge nanoislands

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interband optical transitions in multilayer heterostructures with SiGe nanoislands were investigated using photocurrent spectroscopy and photo-emf. The n-p heterostructures containing Ge nanoislands in the area of the potential barrier were prepared by molecular-beam epitaxy at the temperature about 500 °C. It was shown that electron transitions from the ground state of the valence band in a nanoislands to the conduction band of Si surrounding made the main contribution into the vertical photo-emf in the range 0.75–1.05 eV, which is below the interband absorption edge of Si. The lateral photoconductivity observed in the range 0.63–0.8 eV at 77 K can be attributed to indirect interband transitions from the ground state of a nanoisland to L-state of the conduction band of a nanoisland. Analysis of Raman scattering spectra revealed that the Ge composition x in a nanoisland is about 0.87, while elastic deformation value amounts to εxx = −0.016. The calculated energies of interband transitions from the ground state of a nanoisland to the conduction band of Si surrounding (0.63 eV) and to L-state of the conduction band of a nanoisland (0.81 eV) fit the experimental data with a rather good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kamenev BV, Lee EK, Chang HY, Han H, Grebel H, Tsybeskov L, Kamins TI (2006) Appl Phys Lett 89:153106

    Article  Google Scholar 

  2. Ramos LE, Furthmüller J, Bechstedt F (2005) Phys Rev B 72:045351

    Article  Google Scholar 

  3. Gatskevich EI, Ivlev GD, Volodin VA, Dvurechenskii AV, Efremov MD, Nikiforov AI, Yakimov AI (2007) Proc SPIE 6728:67281U

    Article  Google Scholar 

  4. Lee SW, Park CJ, Kang TW, Cho HY, Hirakawa K (2005) Proc SPIE 5726:146

    Article  Google Scholar 

  5. Colace L, Masini G, Assanto G, Luan HC, Kimerling LK (2006) ECS Trans 3:85

    Article  CAS  Google Scholar 

  6. Yakimov AI, Dvurechenskii AV, Nikiforov AI, Proskuryakov YY (2001) J Appl Phys 89:5676

    Article  CAS  Google Scholar 

  7. Alguno A, Usami N, Ujihara T, Fujiwara K, Sazaki G, Nakajima K, Shiraki Y (2003) Appl Phys Lett 83:1258

    Article  CAS  Google Scholar 

  8. Bagraev NT, Bouravleuv AD, Klyachkin LE, Malyarenko AM, Rykov SA (2001) Proc SPIE 4348:125

    Article  CAS  Google Scholar 

  9. Kolobov AV (2000) J Appl Phys 87:2926

    Article  CAS  Google Scholar 

  10. Baranov AV, Fedorov AV, Perova TS (2006) Phys Rev B 73:075322

    Article  Google Scholar 

  11. Reparaz JS, Bernardi A, Goni AR, Alonso MI, Garriga M (2009) Phys Stat Sol B 56:1

    Google Scholar 

  12. Bernardi A, Alonso MI, Reparaz JS, Goni AR, Lacharmoise PD, Osso JO, Garriga M (2007) Nanotechnology 18:475401

    Article  Google Scholar 

  13. Dvurechenskii AV, Smagina ZV, Zinoviev VA, Armbrister VA, Volodin VA, Efremov MD (2004) ZhETF Lett 79:411

    Google Scholar 

  14. Tan PH, Brunner K, Bougeard D, Abstreiter G (2003) Phys Rev B 68:125302

    Article  Google Scholar 

  15. Alonso MI, de la Calle M, Osso JO (2005) J Appl Phys 98:033530

    Article  Google Scholar 

  16. Reparaz JS, Bernardi A, Goni AR (2008) Appl Phys Lett 92:081909

    Article  Google Scholar 

  17. Van de Walle CG (1989) Phys Rev B 39:1871

    Article  Google Scholar 

  18. Kasper E (2000) Properties of silicon germanium and SiGe: carbon. INSPEC, London

    Google Scholar 

  19. Valakh MY, Yukhymchuk VO, Nikolenko AS (2007) Semicond Sci Technol 22:326

    Article  CAS  Google Scholar 

  20. Kondratenko SV, Vakulenko OV, Kozyrev YN, Rubezhanska MY, Nikolenko AS, Golovinskiy SL (2007) Surf Sci 601:L45

    Article  CAS  Google Scholar 

  21. Kondratenko SV, Vakulenko OV, Kozyrev YN, Rubezhanska MY, Nikolenko AS, Golovinskiy SL (2007) Nanotechnology 18:185401

    Article  Google Scholar 

  22. Talochkin AB, Chistokhin IB, Markov VA (2009) Nanotechnology 20:175401

    Article  CAS  Google Scholar 

  23. Kozyrev YN, Kondratenko SV, Rubezhanska MY, Lysenko VS, Teichert C, Hofer C (2010) In: Shpak AP, Gorbyk PP (eds) Nanomaterials and supramolecular structures-physics chemistry and applications. Springer, Berlin, p 235. ISBN 978-90-481-2308-7

    Google Scholar 

  24. Valakh MY, Yukhymchuk V, Dzhagan VM, Lytvyn OS, Milekhin AG, Nikiforov AI, Pchelyakov OP, Alsina F, Pascual J (2005) Nanotechnology 16:1464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was implemented within the bilateral ÖAD Project UA No 2009/08 and supported by the program of fundamental research of the National Academy of Sciences of Ukraine “Nanostructured systems, nanomaterials, nanotechnologies” through the Project No9/07 and by the Ministry of Education and Science of Ukraine through Project NoM/34-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Rubezhanska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondratenko, S.V., Vakulenko, O.V., Kozyrev, Y.N. et al. Photovoltaic properties and photoconductivity in multilayer Ge/Si heterostructures with Ge nanoislands. J Mater Sci 46, 5737–5742 (2011). https://doi.org/10.1007/s10853-011-5528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5528-2

Keywords

Navigation