Skip to main content
Log in

Hybrid organic/inorganic composites based on silica and weak synthetic polyelectrolytes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The preparation and characterization of new organic/inorganic composites by the consecutive adsorption of weak polyelectrolytes on silica particles were studied in the article. Two polycations containing primary amine groups in the side chains, poly(vinylamine) or poly[N(β-aminoethylene) acrylamide], and poly(acrylic acid) as polyanion were used for the hybrid materials construction. The stability of the organic/inorganic composites has been increased by a heat-induced reaction at 150 °C. The organic/silica hybrids properties were monitored by potentiometric titration, laser light scattering, infrared spectroscopy, and thermogravimetric analysis. The adsorption of methylene blue by the composite materials has been tested. The dye adsorption capacity was strongly influenced by the dye concentration, the nature of the last adsorbed layer, the polyions concentration, and the composite thermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kelly A (2006) J Mater Sci 41:905. doi:https://doi.org/10.1007/s10853-006-6569-9

    Article  CAS  Google Scholar 

  2. Kuraoka K, Ueda T, Sato M, Okamoto T, Yazawa T (2005) J Mater Sci 40:3577. doi:https://doi.org/10.1007/s10853-005-2880-0

    Article  CAS  Google Scholar 

  3. Dorozhkin SV (2009) J Mater Sci 44:2343. doi:https://doi.org/10.1007/s10853-008-3124-x

    Article  CAS  Google Scholar 

  4. Loh KJ, Chang D (2011) J Mater Sci 46:228. doi:https://doi.org/10.1007/s10853-010-4940-3

    Article  CAS  Google Scholar 

  5. Decher G (1997) Science 27:1232

    Article  Google Scholar 

  6. von Klitzing R, Tieke B (2004) Adv Polym Sci 165:177

    Article  Google Scholar 

  7. Pallandre A, Moussa A, Nysten B, Jonas AM (2006) Adv Mater 18:481

    Article  CAS  Google Scholar 

  8. Dragan ES, Mihai M, Schauer J, Ghimici L (2005) J Polym Sci A Polym Chem 43:4161

    Article  CAS  Google Scholar 

  9. Kudaibergenov SE, Tatykhanova GS, Arinov BZh, Kozhakhmetov SK, Aseyev VO (2008) eXPRESS Polym Lett 2:101

    Article  CAS  Google Scholar 

  10. Ai H, Gao J (2004) J Mater Sci 39:1429. doi:https://doi.org/10.1023/B:JMSC.0000013910.63194.db

    Article  CAS  Google Scholar 

  11. Fu H, Kobayashi T (2010) J Mater Sci 45:6694. doi:https://doi.org/10.1007/s10853-010-4762-3

    Article  CAS  Google Scholar 

  12. Dragan ES, Schwarz S, Eichhorn K-J (2010) Colloid Surf A 372:210

    Article  CAS  Google Scholar 

  13. Fendler JH (1996) Chem Mater 8:1616

    Article  CAS  Google Scholar 

  14. Mamedov A, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Nat Mater 1:190

    Article  CAS  Google Scholar 

  15. Sukhishvili SA (2005) Curr Opin Coll Interface Sci 10:37

    Article  CAS  Google Scholar 

  16. Serizawa T, Hamada K, Kitayama T, Fujimoto N, Hatada K, Akashi M (2000) J Am Chem Soc 122:1891

    Article  CAS  Google Scholar 

  17. Caruso F, Furlong DN, Ariga K, Ichinose I, Kunitake T (1998) Langmuir 14:4559

    Article  CAS  Google Scholar 

  18. Harris JJ, Bruening ML (2000) Langmuir 16:2006

    Article  CAS  Google Scholar 

  19. Caruso F, Schüler C (2000) Langmuir 16:9595

    Article  CAS  Google Scholar 

  20. Yang X, Johnson S, Shi J, Holesinger T, Swanson B (1997) Sens Actuator B Chem 45:87

    Article  CAS  Google Scholar 

  21. Krasemann L, Tieke B (2000) Langmuir 16:287

    Article  CAS  Google Scholar 

  22. DeLongchamp D, Hammond PT (2001) Adv Mater 13:1455

    Article  Google Scholar 

  23. Sukhorukov GB, Antipov AA, Voigt A, Donath E, Mohwald H (2001) Macromol Rapid Commun 22:44

    Article  CAS  Google Scholar 

  24. Shutava T, Prouty M, Kommireddy D, Lvov Y (2005) Macromolecules 38:2850

    Article  CAS  Google Scholar 

  25. Tong W, Gao C, Mohwald H (2006) Macromolecules 39:335

    Article  CAS  Google Scholar 

  26. Balachandra M, Dai J, Bruening ML (2002) Macromolecules 35:3171

    Article  CAS  Google Scholar 

  27. Dragan ES, Mihai M, Airinei A (2006) J Polym Sci A Polym Chem 44:5898

    Article  CAS  Google Scholar 

  28. Dragan S, Barboiu V, Petrariu I, Dima M (1981) J Polym Sci Polym Chem Ed 19:2869

    Article  CAS  Google Scholar 

  29. Mastersizer 2000 brochure. https://doi.org/www.malvern.com/common/downloads/MRK501.pdf

  30. Bucatariu F, Dragan ES, Simon F (2007) Biomacromolecules 8:2954

    Article  CAS  Google Scholar 

  31. Simon F, Dragan ES, Bucatariu F (2008) React Funct Polym 68:1178

    Article  CAS  Google Scholar 

  32. Pretsch E, Bulmann P, Affolter C (eds) (2000) Structure determination of organic compounds. Tables of spectral data, 3rd edn. Springer-Verlag, Berlin, Heidelberg, New York, pp 245–312

  33. Berwig E, Severgnini VLS, Soldi MS, Bianco G, Pinheiro EA, Pires ATN, Soldi V (2003) Polym Degrad Stab 79:93

    Article  CAS  Google Scholar 

  34. Coats W, Redfern JP (1964) Nature 201:68

    Article  CAS  Google Scholar 

  35. Hamciuc C, Vlad-Bubulac T, Petreus O, Lisa G (2007) Eur Polym J 43:980

    Article  CAS  Google Scholar 

  36. Cai J, Bi L (2008) Integral Energy Fuels 22:2172

    Article  CAS  Google Scholar 

  37. Stawski D, Jantas R (2009) Potato Res 52:355

    Article  CAS  Google Scholar 

  38. Reich L, Levi DW (1963) Makromol Chem 66:102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the group of Micro- and nano-structures characterization Laboratory (“Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania) for performing particle dimension measurements. The financial support of European Social Fund—“Cristofor I. Simionescu” Postdoctoral Fellowship Program (ID POSDRU/89/1.5/S/55216) and Grant No. 981 (Exploratory Research Project) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Mihai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihai, M., Drăgan, E.S. Hybrid organic/inorganic composites based on silica and weak synthetic polyelectrolytes. J Mater Sci 46, 5723–5731 (2011). https://doi.org/10.1007/s10853-011-5526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5526-4

Keywords

Navigation