Skip to main content
Log in

In situ synthesis of gold–polyaniline composite in nanopores of polycarbonate membrane

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In situ one-step chemical synthesis route for the preparation of a gold–polyaniline composite in nanopores of polycarbonate (PC) membrane is reported. PC membrane, which was placed in a specially designed two-compartment cell, separated the aqueous solution of aniline from HAuCl4 solution. Concentration gradient across the membrane caused movement of AuCl4 and anilinium ions in the pores of polycarbonate membrane. Nanopores in PC membrane acted as reaction vessels where aniline and HAuCl4 were allowed to mix together, and the redox reaction between aniline and HAuCl4 led to the formation of gold–polyaniline composite. The gold–polyaniline composite in PC membrane was characterised by EDXRF, XRD, UV–Vis spectroscopy, FTIR and TEM. Peak broadening in XRD suggests that Au particles formed in the membrane are nanocrystallites and average crystallite size is (24 ± 4) nm. TEM studies show that gold nanoparticles are randomly dispersed in polyaniline clusters formed in the nanopores of PC membrane. Characterisation results show that the surfaces of the PC membrane exposed to HAuCl4 and aniline have significantly higher concentrations of Au nanoparticles and polyaniline, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smith JA, Josowicz M, Janata J (2005) Phys Chem Chem Phys 7:3614

    Article  CAS  Google Scholar 

  2. Smith JA, Josowicz M (2005) Phys Chem Chem Phys 7:3619

    Article  CAS  Google Scholar 

  3. Jing S, Xing S, Yu L, Wu Y, Zhao C (2007) Mater Lett 61:2794

    Article  CAS  Google Scholar 

  4. Ward RE, Meyer TY (2003) Macromolecules 36:4368

    Article  CAS  Google Scholar 

  5. Huang JX, Moore JA, Acquaye JH, Kaner RB (2005) Macromolecules 38:317

    Article  CAS  Google Scholar 

  6. Englebienne P, Hoonacker AV (2005) J Colloid Interface Sci 292:445

    Article  CAS  Google Scholar 

  7. Zhang D, Wang Y (2006) Mater Sci Eng B 134:9

    Article  CAS  Google Scholar 

  8. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Prog Polym Sci 34:783

    Article  CAS  Google Scholar 

  9. Sarma TK, Chattopadhyay A (2004) Langmuir 20:4733

    Article  CAS  Google Scholar 

  10. Cui G, Lee JS, Kim SJ, Nam H, Cha GS, Kim HD (1998) Analyst 123:1855

    Article  CAS  Google Scholar 

  11. Karyakin AA, Lukachora LV, Karyakin EE, Orlov AV, Kappachora GP (1999) Anal Commun 36:153

    Article  CAS  Google Scholar 

  12. Sun Y, Xia Y (2002) Adv Mater 14:833

    Article  CAS  Google Scholar 

  13. Mason MG, Lee ST, Apai S (1980) Chem Phys Lett 76:51

    Article  CAS  Google Scholar 

  14. Wertheim GK, DiCenzo SB, Youngquist SE (1983) Phys Rev Lett 51:2310

    Article  CAS  Google Scholar 

  15. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  16. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301

    Article  CAS  Google Scholar 

  17. Dixon MC, Daniel TA, Hieda M, Smilgies DM, Chan HW, Allara DL (2007) Langmuir 23:2414

    Article  CAS  Google Scholar 

  18. Jaramillo TF, Baeck SH, Cuenya BR, McFarland EW (2003) J Am Chem Soc 125:7148

    Article  CAS  Google Scholar 

  19. Sakai N, Fujiwara Y, Aria M, Yu K, Tatsuma T (2009) J Electroanal Chem 628:7

    Article  CAS  Google Scholar 

  20. Guo S, Wang E (2007) Anal Chim Acta 598:181

    Article  CAS  Google Scholar 

  21. Yu YY, Chang SS, Lee CL, Wang CRC (1997) J Phys Chem B 101:6661

    Article  CAS  Google Scholar 

  22. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Electrochim Acta 53:5848

    Article  CAS  Google Scholar 

  23. Daniel MC, Astruc D (2004) Chem Rev 104:293

    Article  CAS  Google Scholar 

  24. Cheng W, Dong S, Wang E (2002) Langmuir 18:9947

    Article  CAS  Google Scholar 

  25. Selvakannan PR, Mandal S, Pasricha R, Sastry M (2004) J Colloid Interface Sci 279:124

    Article  CAS  Google Scholar 

  26. Mallick K, Witcomb MJ, Scurrell MS (2006) J Mater Sci 41:6189. doi:https://doi.org/10.1007/s10853-006-0019-6

    Article  CAS  Google Scholar 

  27. Smith JA, Josowicz M, Janata J (2003) J Electrochem Soc 150:E384

    Article  CAS  Google Scholar 

  28. Saheb A, Smith JA, Josowicz M, Janata J, Baer DR, Engelhard MH (2008) J Electroanal Chem 621:238

    Article  CAS  Google Scholar 

  29. Granot E, Katz E, Basnar B, Wliiner I (2005) Chem Mater 17:4600

    Article  CAS  Google Scholar 

  30. Hatchett DW, Josowicz M, Janata J (1999) Chem Mater 11:2989

    Article  CAS  Google Scholar 

  31. Neoh KG, Young TT, Looi NT, Kang ET, Tan KL (1997) Chem Mater 9:2906

    Article  CAS  Google Scholar 

  32. Genies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Synth Met 36:139

    Article  CAS  Google Scholar 

  33. Lux F (1994) Polymer 35:2915

    Article  CAS  Google Scholar 

  34. Selvan ST, Nogami M (1998) Mater Sci Lett 17:1385

    Article  CAS  Google Scholar 

  35. Henry MC, Hsueh CC, Timko BP, Freund MS (2001) J Electrochem Soc 148:D155

    Article  CAS  Google Scholar 

  36. Dai X, Tan Y, Xu J (2002) Langmuir 18:9010

    Article  CAS  Google Scholar 

  37. Sarma TS, Chowdhary D, Paul A, Chattopadhyay A (2002) Chem Commun 1048

  38. Kinyanjui JM, Hatchett DW, Smith JA, Josowicz M (2004) Chem Mater 16:3390

    Article  CAS  Google Scholar 

  39. Mallick K, Witcomb MJ, Dinsmore A, Scurrell MS (2005) Macromol Rapid Commun 26:232

    Article  CAS  Google Scholar 

  40. Wang Y, Liu Z, Han B, Sun Z, Huang Y, Yang G (2005) Langmuir 21:833

    Article  CAS  Google Scholar 

  41. Pillalamarri SK, Blum FD and Bertino (2005) Chem Commun 4584

  42. Larosa C, Stura E, Eggenhoffner R, Nicolini C (2009) Materials 2:1193

    Article  CAS  Google Scholar 

  43. Martin CR (1994) Science 266:1961

    Article  CAS  Google Scholar 

  44. Schonenberger C, Van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Kriiger M, Bachtold A, Huber R, Birk H, Staufer U (1997) J Phys Chem B 101:5497

    Article  Google Scholar 

  45. Rahman A, Sanyal MK, Gangopadhyay R, De A, Das I (2006) Phys Rev B 73:125313

    Article  CAS  Google Scholar 

  46. Martin CR (1994) Chem Mater 6:1627

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. K. Krishnan, Fuel Chemistry Division, BARC, for carrying out XRD and Mr. S. Sanjay Kumar, Fuel Chemistry Division, BARC, for EDXRF analyses. The authors also thank Dr. R. Tewari, Material Science Division, BARC, for carrying out TEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K. Aggarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M.K., Ambolikar, A.S. & Aggarwal, S.K. In situ synthesis of gold–polyaniline composite in nanopores of polycarbonate membrane. J Mater Sci 46, 5715–5722 (2011). https://doi.org/10.1007/s10853-011-5525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5525-5

Keywords

Navigation