Skip to main content
Log in

The effect of preparation method on the activities of Pd–Fe–Ox/Al2O3 catalysts for CO oxidation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Pd–Fe–Ox/Al2O3 catalysts were prepared by co-impregnation (co-Pd–Fe–Ox/Al2O3) and sol–gel method (sol–gel–Pd–Fe–Ox/Al2O3) and characterized by N2 adsorption–desorption, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The CO catalytic oxidation was investigated over Pd–Fe–Ox/Al2O3 catalysts prepared by different methods. The 100% conversion temperature (T 100) over pre-reduced co-Pd–Fe–Ox/Al2O3 (co-Pd–Fe–Ox/Al2O3–R) and pre-reduced sol–gel–Pd–Fe–Ox/Al2O3 (sol–gel–Pd–Fe–Ox/Al2O3–R) is 90 and 25 °C when fed with the reaction mixture containing 1 vol.% CO and a balance of air, respectively. XRD results indicate that the sol–gel method is favorable for the high dispersion of PdO particles compared with co-impregnation method. H2-TPR results suggest that the interaction between Pd and Fe is existent over both sol–gel–Pd–Fe–Ox/Al2O3 and co-Pd–Fe–Ox/Al2O3 catalysts, while the interaction in former catalyst is stronger than that in the latter. The XPS results show that the Pd species on the surface of both sol–gel–Pd–Fe–Ox/Al2O3–R and co-Pd–Fe–Ox/Al2O3–R catalysts are the mixture of oxide and metal state, leading to the high activity for CO oxidation. Furthermore, the different Pd2+/Pd0 ratio may be the reason for the different activity between sol–gel–Pd–Fe–Ox/Al2O3–R and reduced co-Pd–Fe–Ox/Al2O3–R catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cutrufello MG, Rombi E, Cannas C, Casu M, Virga A, Fiorilli S, Onida B, Ferino I (2009) J Mater Sci 44:6644. doi:https://doi.org/10.1007/s10853-009-3510-z

    Article  CAS  Google Scholar 

  2. Margitfalvi JL, Borbáth I, Hegedús M, Tfirst E, Góbölös S, Lázár K (2000) J Catal 196:200

    Article  CAS  Google Scholar 

  3. Bi YS, Chen L, Lu GX (2007) J Mol Catal A 266:173

    Article  CAS  Google Scholar 

  4. Qiao BT, Liu LQ, Zhang J, Deng YQ (2009) J Catal 261:241

    Article  CAS  Google Scholar 

  5. Shen YX, Lu GZ, Guo Y, Wang YQ (2010) Chem Commun 46:8433

    Article  CAS  Google Scholar 

  6. Liu LQ, Zhou F, Wang LG, Qi XJ, Shi F, Deng YQ (2010) J Catal 274:1

    Article  CAS  Google Scholar 

  7. Yu YB, Takei T, Ohashi H, He H, Zhang XL, Haruta M (2009) J Catal 267:121

    Article  CAS  Google Scholar 

  8. Iablokov V, Frey K, Geszti O, Kruse N (2010) Catal Lett 134:210

    Article  CAS  Google Scholar 

  9. Lin HY, Chen YW, Wang WJ (2005) J Nanopart Res 7:249

    Article  CAS  Google Scholar 

  10. Cao JL, Shao GS, Ma TY, Wang Y, Ren TZ, Wu SH, Yuan ZY (2009) J Mater Sci 44:6717. doi:https://doi.org/10.1007/s10853-009-3583-8

    Article  CAS  Google Scholar 

  11. Liu Y, Wen C, Guo Y, Lu GZ, Wang YQ (2010) J Mol Catal A 316:59

    Article  CAS  Google Scholar 

  12. Cao JL, Deng QF, Yuan ZY (2009) J Mater Sci 44:6663. doi:https://doi.org/10.1007/s10853-009-3582-9

    Article  CAS  Google Scholar 

  13. Lin SD, Gluhoi AC, Nieuwenhuys BE (2004) Catal Today 90:3

    Article  CAS  Google Scholar 

  14. Liu XS, Korotkikh O, Farrauto R (2002) Appl Catal A 226:293

    Article  CAS  Google Scholar 

  15. Sirijaruphan A, Goodwin JG Jr, Rice RW (2004) J Catal 224:304

    Article  CAS  Google Scholar 

  16. Son IH, Lane AM (2001) Catal Lett 76:151

    Article  CAS  Google Scholar 

  17. Profeti LPR, Ticianelli EA, Assaf EM (2008) Fuel 87:2076

    Article  CAS  Google Scholar 

  18. García MF, Arias AM, Yuez AI, Hungría AB, Anderson JA, Conesa JC, Soria J (2003) J Catal 214:220

    Article  Google Scholar 

  19. Ciuparu D, Bensalem A, Pfefferle L (2000) Appl Catal B 26:241

    Article  CAS  Google Scholar 

  20. Pârvulescu VI, Filoti G, Pârvulescu V, Grecu N, Angelescu E, Nicolescu LV (1994) J Mol Catal 89:267

    Article  Google Scholar 

  21. Bachir R, Marecot P, Didillon B, Barbier J (1997) Appl Catal A 164:313

    Article  CAS  Google Scholar 

  22. Nagpal V, Bokara AD, Chikate RC, Rode CV, Paknikar KM (2010) J Hazard Mater 175:680

    Article  CAS  Google Scholar 

  23. Babu NS, Lingaiah N, Kumar JV, Sai Prasad PS (2009) Appl Catal A 367:70

    Article  CAS  Google Scholar 

  24. Berry FJ, X CH, Jobson S (1990) J Chem Soc Faraday Trans 86:165

    Article  CAS  Google Scholar 

  25. Yue BH, Zhou RX, Zheng XM, Lu WC (2008) Fuel Process Technol 89:728

    Article  CAS  Google Scholar 

  26. Moulder JF, Stickle WF, Esoble PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., USA

    Google Scholar 

  27. Guzman J, Gates BC (2004) J Am Chem Soc 126:2672

    Article  CAS  Google Scholar 

  28. Szegedi A, Hegedus M, Margitfalvi JL, Kiricsi I (2005) Chem Commun 11:1441

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported financially by National Basic Research Program of China (2010CB732300), National Key Technologies R & D Program of China (2007BAJ03B01), Education Commission of Shanghai Municipality (2008CG35), Science and Technology Commission of Shanghai Municipality (09ZR1408200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wangcheng Zhan or Zhigang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, L., Lu, G., Zhan, W. et al. The effect of preparation method on the activities of Pd–Fe–Ox/Al2O3 catalysts for CO oxidation. J Mater Sci 46, 5639–5644 (2011). https://doi.org/10.1007/s10853-011-5514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5514-8

Keywords

Navigation