Skip to main content
Log in

ECAP processing and mechanical milling of Mg and Mg–Ti powders: a comparative study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study was carried out into the possibility of employing ECAP processing in lieu of mechanical milling for the purpose of developing powder-based hydrogen storage alloys. Mg and Mg–Ti powder compacts were encapsulated in a copper block and were subjected to ECAP deformation to an apparent strain of ε = 4. This resulted in the consolidation of the compacts as well as in the refinement of their structures. The values of coherently diffracting volume size were as small as 70–80 nm, quite comparable to those achieved with mechanical milling. It is, therefore, concluded that ECAP processing can be employed successfully for the purpose of structural refinement. As for material synthesis, however, the ECAP is less efficient in expanding the interfacial area. Therefore, it is necessary to impose relatively heavy strains to able to achieve comparable expansion in the interfacial area. It appears that an advantage of ECAP deformation is the development of structures which have improved ability for milling. It is, therefore, recommended that in the processing of hydrogen storage alloys, the powder mixtures may be first processed with ECAP in open atmosphere and then by mechanical milling of a short duration carried out under protective atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Suryanarayana C (2001) Prog Mater Sci 46:1

    Article  CAS  Google Scholar 

  2. Pedneault S, Huot J, Roue L (2008) J Power Sour 185:566

    Article  CAS  Google Scholar 

  3. Segal VM (1999) Mater Sci Eng A 271:322

    Article  Google Scholar 

  4. Güvendiren M, Baybörü E, Öztürk T (2004) Int J Hydrogen Energy 29:491

    Article  Google Scholar 

  5. Mandzhukova T, Bobet J-L, Khrussanova M, Peshev P (2009) Mater Res Bull 44:1968

    Article  CAS  Google Scholar 

  6. Huang JY, Wu YK, Ye HQ (1995) Mater Sci Eng A 199:165

    Article  Google Scholar 

  7. Çakmak G, Károly Z, Mohai I, Öztürk T, Szépvölgyi J (2010) Int J Hydrogen Energy 35:10412

    Article  Google Scholar 

  8. Zaluska A, Zaluski L, Ström–Olsen JO (1999) J Alloy Compd 288:217

    Article  CAS  Google Scholar 

  9. Wieczorek AK, Krystian M, Zehetbauer MJ (2006) Solid State Phenom 114:177

    Article  CAS  Google Scholar 

  10. Ivey DG, Northwood DO (1983) J Mater Sci 18:321. doi:https://doi.org/10.1007/BF00560621

    Article  CAS  Google Scholar 

  11. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  12. Komura S, Horita Z, Nemoto M, Langdon TG (1999) J Mat Res 14:4044

    Article  CAS  Google Scholar 

  13. Pushin VG, Stolyarov VV, Valiev RZ, Kourov NI, Kuranova NN, Prokofiev EA, Yurchenko LI (2002) Ann Chim Sci Mater 27:77

    Article  CAS  Google Scholar 

  14. Zehetbauer M, Grössinger R, Krenn H, Krystian M, Pippan R, Rogl P, Waitz T, Würschum R (2010) Adv Eng Mater 12:692

    Article  CAS  Google Scholar 

  15. Skripnyuk VM, Rabkin E, Estrin Y, Lapovok R (2004) Acta Mater 52:405

    Article  CAS  Google Scholar 

  16. Skripnyuk V, Buchman E, Rabkin E, Estrin Y, Popov M, Jorgensen S (2007) J Alloy Compd 436:99

    Article  CAS  Google Scholar 

  17. Çakmak G, Bobet J-L, Ölmez R, Öztürk T (2007) In: Proceedings International Hydrogen Energy Congress and Exhibition IHEC, Istanbul, Turkey

  18. Loken S, Solberg JK, Maehlen JP, Denys RV, Lototsky MV, Tarasov BP, Yartys VA (2007) J Alloy Compd 446–447:114

    Article  Google Scholar 

  19. Sprinyuk VM, Rabkin E, Estrin Y, Lapovok R (2009) Int J Hydrogen Energy 34:6320

    Article  Google Scholar 

  20. Leiva DR, Fruchart D, Bacia M, Girard G, Skryabina N, Villela ACS, Miraglia S, Santos DS, Botta WJ (2009) Int J Mater Res 100:1739

    Article  CAS  Google Scholar 

  21. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143

    Article  CAS  Google Scholar 

  22. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328

    Article  Google Scholar 

  23. Raab GI (2005) Mater Sci Eng A 410–411:230

    Article  Google Scholar 

  24. Dinkel M, Pyczak F, May J, Höppel HW, Göken M (2008) J Mater Sci 43:7481. doi:https://doi.org/10.1007/s10853-008-2859-8

    Article  CAS  Google Scholar 

  25. Máthis K, Gubicza J, Nam NH (2005) J Alloy Compd 394:194

    Article  Google Scholar 

  26. Wu HM, Hung SS, Lee PY (2007) J Alloy Compd 434–435:386

    Article  Google Scholar 

  27. Moss M, Lapovok R, Bettles CJ (2007) JOM 59:54

    Article  CAS  Google Scholar 

  28. Xia K, Wu X (2005) Scr Mater 53:1225

    Article  CAS  Google Scholar 

  29. Quang P, Jeong YG, Yoon SC, Hong SH, Kim HS (2007) J Mater Process Technol 187–188:318

    Article  Google Scholar 

  30. Öztürk T, Mirmesdagh J, Ediz T (1994) Mater Sci Eng A 175:125

    Article  Google Scholar 

  31. Shingu PH, Ishihara KN, Otsuki A, Daigo I (2001) Mater Sci Eng A 304–306:399

    Article  Google Scholar 

Download references

Acknowledgements

Support for this study was provided by DPT with project number BAP-03-08-DPT.200305K120920-20 and by the FP6 program of the European Commission project (FP6-200-3-518-271), NESSHY, which we gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayfur Öztürk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çakmak, G., Öztürk, T. ECAP processing and mechanical milling of Mg and Mg–Ti powders: a comparative study. J Mater Sci 46, 5559–5567 (2011). https://doi.org/10.1007/s10853-011-5506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5506-8

Keywords

Navigation