Skip to main content
Log in

The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A resurgence of interest in unsupported catalysts, commonly nanostructured Pt or Pt-based catalysts, for use in low-temperature fuel cells has occurred in recent years: indeed, the use of unsupported nanostructured catalysts may provide improved long-term stability during fuel cell operation compared to the carbon-supported catalysts because the carbon corrosion issue is eliminated. Catalyst utilization can be increased by developing novel nanostructures with high surface area and/or high catalytic activity. Indeed, in recent years, the strategy to increase the catalyst utilization has gone from decreasing the nanoparticle size to tailoring new nanostructures. This work presents an overview of recent studies on novel metal nanostructures for their possible use in low-temperature fuel cells, highlighting that these materials can better perform than the commonly utilized carbon-supported catalysts at similar catalyst loadings, having at the same time a higher stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Solid Polymer Electrolyte Fuel Cell Technology Program (1980) In: Test report BU #1 and BU #2 (1.1 ft2). Direct Energy Conversion Programs, General Electric Co., TRP-76 Contract NAS 9-15286

  2. Srinivasan S, Ticianelli EA, Derouin CR, Redondo A (1988) J Power Sources 22:359

    Article  CAS  Google Scholar 

  3. Costamagna P, Srinivasan S (2001) J Power Sources 102:242

    Article  CAS  Google Scholar 

  4. Wilson MS, Gottesfeld S (1992) J Electrochem Soc 139:L28

    Article  CAS  Google Scholar 

  5. Wilson MS, Valerio JA, Gottesfeld S (1995) Electrochim Acta 40:355

    Article  CAS  Google Scholar 

  6. Liu L, Pu G, Viswanathan R, Fan QB, Liu RX, Smotkin ES (1998) Electrochim Acta 43:3657

    Article  CAS  Google Scholar 

  7. Kangasniemi KH, Condit DA, Jarvi TD (2004) J Electrochem Soc 151:E125

    Article  CAS  Google Scholar 

  8. Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C (2008) J Power Sources 176:444

    Article  CAS  Google Scholar 

  9. Stevens DA, Dahn JR (2005) Carbon 43:179

    Article  CAS  Google Scholar 

  10. Antolini E, Gonzalez ER (2009) Solid State Ionics 180:746

    Article  CAS  Google Scholar 

  11. Ren XM, Wilson MS, Gottesfeld S (1996) J Electrochem Soc 143:L12

    Article  CAS  Google Scholar 

  12. Aricò AS, Shukla AK, El-Khatib KM, Creti P, Antonucci V (1999) J Appl Electrochem 29:671

    Article  Google Scholar 

  13. Chen JY, Lim B, Lee EP, Xia YN (2009) Nano Today 4:81

    Article  CAS  Google Scholar 

  14. Peng ZM, Yang H (2009) Nano Today 4:143

    Article  CAS  Google Scholar 

  15. Subhramannia M, Pillai VK (2008) J Mater Chem 18:5858

    Article  CAS  Google Scholar 

  16. Bing YH, Liu HS, Zhang L, Ghosh D, Zhang JJ (2010) Chem Soc Rev 39:2184

    Article  CAS  Google Scholar 

  17. Kinoshita K (1990) J Electrochem Soc 137:845

    Article  CAS  Google Scholar 

  18. Peuckert M, Yoneda T, Della Betta RA, Boudart M (1986) J Electrochem Soc 133:944

    Article  CAS  Google Scholar 

  19. Sattler ML, Ross PN (1986) Ultramicroscopy 20:21

    Article  CAS  Google Scholar 

  20. Gamez A, Richard D, Gallezot P, Gloaguen F, Faure R, Durand R (1996) Electrochim Acta 41:307

    Article  CAS  Google Scholar 

  21. Antoine O, Bultel Y, Durand R (2001) J Electroanal Chem 499:85

    Article  CAS  Google Scholar 

  22. Takasu Y, Ohashi N, Zhang XG, Murakami Y, Minagawa H, Sato S, Yahikozawa K (1996) Electrochim Acta 41:2595

    Article  CAS  Google Scholar 

  23. Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163

    Article  CAS  Google Scholar 

  24. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) J Phys Chem B 109:14433

    Article  CAS  Google Scholar 

  25. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56:9

    Article  CAS  Google Scholar 

  26. Kabbabi A, Gloaguen F, Andolfatto F, Durand R (1994) J Electroanal Chem 373:251

    Article  CAS  Google Scholar 

  27. Frelink T, Visscher W, Van Veen JAR (1995) J Electroanal Chem 382:65

    Article  Google Scholar 

  28. Zeng JH, Lee JY, Zhou WJ (2006) Appl Catal A 308:99

    Article  CAS  Google Scholar 

  29. Narayanan R, El-Sayed MA (2004) Nano Lett 4:1343

    Article  CAS  Google Scholar 

  30. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371

    Article  CAS  Google Scholar 

  31. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924

    Article  CAS  Google Scholar 

  32. Chu D, Gilman (1996) J Electrochem Soc 143:1685

    Article  CAS  Google Scholar 

  33. Park K, Choi J, Kwon B, Lee S, Sung Y, Ha H, Hong S, Kim H, Wieckowski A (2002) J Phys Chem B 106:1869

    Article  CAS  Google Scholar 

  34. Wang Y, Ren J, Deng K, Gui L, Tang Y (2000) Chem Mater 12:1622

    Article  CAS  Google Scholar 

  35. Bonnemann H (1995) Stud Surf Sci Catal 91:185

    Article  Google Scholar 

  36. Zhang X, Tsang K, Chan K (2004) J Electroanal Chem 573:1

    CAS  Google Scholar 

  37. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989

    Article  CAS  Google Scholar 

  38. Ould Ely T, Pan C, Amiens C, Chaudret B, Dassenoy F, Lecante P, Casanove MJ, Mosset A, Respaund M, Broto JM (2000) J Phys Chem B 104:695

    Article  CAS  Google Scholar 

  39. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Angew Chem Int Ed 45:7824

    Article  CAS  Google Scholar 

  40. Song H, Kim F, Connor S, Somorjai GA, Yang P (2005) J Phys Chem B 109:188

    Article  CAS  Google Scholar 

  41. Chen JY, Herricks T, Xia YN (2005) Angew Chem Int Ed 44:2589

    Article  CAS  Google Scholar 

  42. Lim BW, Lu XM, Jiang MJ, Camargo PHC, Cho EC, Lee EP, Xia YN (2008) Nano Lett 8:4043

    Article  CAS  Google Scholar 

  43. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Science 316:732

    Article  CAS  Google Scholar 

  44. Tiemann M (2008) Chem Mater 20:961

    Article  CAS  Google Scholar 

  45. Jiang JH, Kucernak A (2004) Chem Mater 16:1362

    Article  CAS  Google Scholar 

  46. Chen ZW, Waje M, Li WZ, Yan YS (2007) Angew Chem Int Ed 46:4060

    Article  CAS  Google Scholar 

  47. Song YJ, Steen WA, Pena D, Jiang YB, Medforth CJ, Huo QS, Pincus JL, Qiu Y, Sasaki DY, Miller JE, Shelnutt JA (2006) Chem Mater 18:2335

    Article  CAS  Google Scholar 

  48. Song Y, Garcia RM, Dorin RM, Wang HR, Qiu Y, Coker EN, Steen WA, Miller JE, Shelnutt JA (2007) Nano Lett 7:3650

    Article  CAS  Google Scholar 

  49. Wang H, Xu CW, Cheng FL, Jiang SP (2007) Electrochem Commun 9:1212

    Article  CAS  Google Scholar 

  50. Zhou HJ, Zhou WP, Adzic RR, Wong SS (2009) J Phys Chem C 113:5460

    Article  CAS  Google Scholar 

  51. Garbarino S, Ponrouch A, Pronovost S, Guay D (2009) Electrochem Commun 11:1449

    Article  CAS  Google Scholar 

  52. Bi YP, Lu GX (2009) Electrochem Commun 11:45

    Article  CAS  Google Scholar 

  53. Zhang XY, Dong DH, Li D, Williams T, Wang HT, Webley PA (2009) Electrochem Commun 11:190

    Article  CAS  Google Scholar 

  54. Zhang XY, Li D, Dong DH, Wang HT, Webley PA (2010) Mater Lett 64:1169

    Article  CAS  Google Scholar 

  55. Gorzny ML, Walton AS, Evans SD (2010) Adv Funct Mater 20:1295

    Article  CAS  Google Scholar 

  56. Zhao GY, Xu CL, Guo DJ, Li H, Li HL (2007) Appl Surf Sci 253:3242

    Article  CAS  Google Scholar 

  57. Song YJ, Han SB, Park KW (2010) Mater Lett 64:1981

    Article  CAS  Google Scholar 

  58. Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagege A, Audonnet F, Remita H (2009) Chem Mater 21:1612

    Article  CAS  Google Scholar 

  59. Kim JM, Joh H-I, Jo SM, Ahn DJ, Ha HY, Hong S-A, Kim S-K (2010) Electrochim Acta 55:4827

    Article  CAS  Google Scholar 

  60. Choi SM, Kim JH, Jung JY, Yoon EY, Kim WB (2008) Electrochim Acta 53:5804

    Article  CAS  Google Scholar 

  61. Garbarino S, Ponrouch A, Pronovost S, Gaudet J, Guay D (2009) Electrochem Commun 11:1924

    Article  CAS  Google Scholar 

  62. Yuan Q, Zhou ZY, Zhuang J, Wang X (2010) Chem Mater 22:2395

    Article  CAS  Google Scholar 

  63. Koenigsmann C, Zhou W, Adzic RR, Sutter E, Wong SS (2010) Nano Lett 10:2806

    Article  CAS  Google Scholar 

  64. Liang ZX, Zhao TS (2007) J Phys Chem C 111:8128

    Article  CAS  Google Scholar 

  65. Du SF (2010) J Power Sources 195:289

    Article  CAS  Google Scholar 

  66. Wang L, Wang HJ, Nemoto Y, Yamauchi Y (2010) Chem Mater 22:2835

    Article  CAS  Google Scholar 

  67. Song YJ, Hickner MA, Challa SR, Dorin RM, Garcia RM, Wang HR, Jiang YB, Li P, Qiu Y, van Swol F, Medforth CJ, Miller JE, Nwoga T, Kawahara K, Li W, Shelnutt JA (2009) Nano Lett 9:1534

    Article  CAS  Google Scholar 

  68. Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YA (2009) Science 324:1302

    Article  CAS  Google Scholar 

  69. Lim B, Jiang MJ, Yu T, Camargo PHC, Xia YN (2010) Nano Res 3:69

    Article  CAS  Google Scholar 

  70. Lin ZH, Lin MH, Chang HT (2009) Chem Eur J 15:4656

    Article  CAS  Google Scholar 

  71. Teng XW, Liang XY, Maksimuk S, Yang H (2006) Small 2:249

    Article  CAS  Google Scholar 

  72. Sun SH, Yang DQ, Villers D, Zhang GX, Sacher E, Dodelet JP (2008) Adv Mater 20:571

    Article  CAS  Google Scholar 

  73. Tiwari JN, Pan FM, Lin KL (2009) New J Chem 33:1482

    Article  CAS  Google Scholar 

  74. Zhang H, Zhou W, Du P, Yang P, Wang C (2010) Electrochem Commun 12:882

    Article  CAS  Google Scholar 

  75. Yin Z, Zheng HJ, Ma D, Bao XH (2009) J Phys Chem C 113:1001

    Article  CAS  Google Scholar 

  76. Zhao DY, Yang PD, Huo QS, Chmelka BF, Stucky GD (1998) Curr Opin Solid State Mater Sci 3:111

    Article  CAS  Google Scholar 

  77. Raimondi ME (1999) Liq Cryst 26:305

    Article  CAS  Google Scholar 

  78. Elliott JM, Birkin PR, Bartlett PN, Attard GS (1999) Langmuir 15:7411

    Article  CAS  Google Scholar 

  79. Elliott JM, Attard GS, Bartlett PN, Coleman BRB, Merckel DAS, Owen JR (1999) Chem Mater 11:3602

    Article  CAS  Google Scholar 

  80. Kucernak A, Jiang JH (2003) Chem Eng J 93:81

    Article  CAS  Google Scholar 

  81. Jiang JH, Kucernak A (2002) J Electroanal Chem 520:64

    Article  CAS  Google Scholar 

  82. Jiang JH, Kucernak A (2002) J Electroanal Chem 533:153

    Article  CAS  Google Scholar 

  83. Jiang JH, Kucernak A (2003) J Electroanal Chem 543:187

    Article  CAS  Google Scholar 

  84. Jiang JH, Kucernak (2009) Electrochem Commun 11:623

    Article  CAS  Google Scholar 

  85. Park EK, Lee JK, Kim YS, Kim GP, Baeck SH (2008) J Phys Chem Solids 69:1284

    Article  CAS  Google Scholar 

  86. Planes GA, Garcia G, Pastor E (2007) Electrochem Commun 9:839

    Article  CAS  Google Scholar 

  87. Bauer A, Wilkinson DP, Gyenge EL, Bizzotto D, Ye S (2009) J Electrochem Soc 156:B1169

    Article  CAS  Google Scholar 

  88. Pugh DV, Dursun A, Corcoran SG (2003) J Mater Res 18:216

    Article  CAS  Google Scholar 

  89. Huang JF, Sun IW (2004) Chem Mater 16:1829

    Article  CAS  Google Scholar 

  90. Peng XS, Koczkur K, Nigro S, Chen AC (2004) Chem Commun 2872-2873

  91. Liu HT, He P, Li ZY, Li JH (2006) Nanotechnology 17:2167

    Article  CAS  Google Scholar 

  92. Yu JS, Ding Y, Xu CX, Inoue A, Sakurai T, Chen MW (2008) Chem Mater 20:4548

    Article  CAS  Google Scholar 

  93. Wang XG, Wang WM, Qi Z, Zhao CC, Ji H, Zhang ZH (2009) Electrochem Commun 11:1896

    Article  CAS  Google Scholar 

  94. Wang XG, Wang WM, Qi Z, Zhao CC, Ji H, Zhang ZH (2010) J Alloy Comp 508:463

    Article  CAS  Google Scholar 

  95. Wang JP, Holt-Hindle P, MacDonald D, Thomas DF, Chen AC (2008) Electrochim Acta 53:6944

    Article  CAS  Google Scholar 

  96. Xu YH, Lin XQ (2007) J Power Sources 170:13

    Article  CAS  Google Scholar 

  97. Liu L, Pippel E, Scholz R, Gosele U (2009) Nano Lett 9:4352

    Article  CAS  Google Scholar 

  98. Markovic NM, Adzic RR, Cahan BD, Yeager EB (1994) J Electroanal Chem 377:249

    Article  CAS  Google Scholar 

  99. Perez J, Villullas HM, Gonzalez ER (1997) J Electroanal Chem 435:179

    Article  CAS  Google Scholar 

  100. Markovic NM, Gasteiger HA, Ross PN (1995) J Phys Chem 99:3411

    Article  CAS  Google Scholar 

  101. Herrero E, Franaszczuk K, Wieckowski A (1994) J Phys Chem 98:5074

    Article  CAS  Google Scholar 

  102. Housmans THM, Wonders AH, Koper MTM (2006) J Phys Chem B 110:10021

    Article  CAS  Google Scholar 

  103. Clavilier J (1987) J Electroanal Chem 236:87

    Article  Google Scholar 

  104. Tong Y, Lu L, Zhang Y, Gao Y, Yin G, Osawa M, Ye S (2007) J Phys Chem C 111:18836

    Article  CAS  Google Scholar 

  105. Macia MD, Campina JM, Herrero E, Feliu JM (2004) J Electroanal Chem 564:141

    Article  CAS  Google Scholar 

  106. Kuzume A, Herrero E, Feliu JM (2007) J Electroanal Chem 599:333

    Article  CAS  Google Scholar 

  107. Solla-Gullon J, Vidal-Iglesias FJ, Lopez-Cudero A, Garnier E, Feliu JM, Aldaz A (2006) Phys Chem Chem Phys 10:3689

    Article  CAS  Google Scholar 

  108. Colmati F, Tremiliosi G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2009) Phys Chem Chem Phys 11:9114

    Article  CAS  Google Scholar 

  109. Lee SW, Chen SO, Sheng WC, Yabuuchi N, Kim YT, Mitani T, Vescovo E, Shao-Horn Y (2009) J Am Chem Soc 131:15669

    Article  CAS  Google Scholar 

  110. Lee SW, Chen S, Suntivich J, Sasaki K, Adzic RR, Shao-Horn Y (2010) J Phys Chem Lett 1:1316

    Article  CAS  Google Scholar 

  111. Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:12663

    Article  CAS  Google Scholar 

  112. Wang C, Daimon H, Lee Y, Kim J, Sun S (2007) J Am Chem Soc 129:6974

    Article  CAS  Google Scholar 

  113. Wang C, Daimon H, Onodera T, Koda T, Sun SH (2008) Angew Chem Int Ed 47:3588

    Article  CAS  Google Scholar 

  114. Han SB, Song YJ, Lee JM, Kim JY, Park KW (2008) Electrochem Commun 10:1044

    Article  CAS  Google Scholar 

  115. Xu D, Liu ZP, Yang HZ, Liu QS, Zhang J, Fang JY, Zou SZ, Sun K (2009) Angew Chem Int Ed 48:4217

    Article  CAS  Google Scholar 

  116. Yang H, Dai L, Xu J, Fang J, Zou S (2010) Electrochim Acta 55:8000

    Article  CAS  Google Scholar 

  117. Lu LL, Yin GP, Wang ZB, Gao YZ (2009) Electrochem Commun 11:1596

    Article  CAS  Google Scholar 

  118. Nogami M, Koike R, Jalem R, Kawamura G, Yang Y, Sasaki Y (2010) J Phys Chem Lett 1:568

    Article  CAS  Google Scholar 

  119. Kang YJ, Murray CB (2010) J Am Chem Soc 132:7568

    Article  CAS  Google Scholar 

  120. Choi SI, Choi R, Han SW, Park JT (2010) Chem Commun 46:4950

    Article  CAS  Google Scholar 

  121. Xiong YJ, Wiley B, Xia YN (2007) Angew Chem Int Ed 46:7157

    Article  CAS  Google Scholar 

  122. Antolini E (2009) Appl Catal B 88:1

    Article  CAS  Google Scholar 

  123. Zhang J, Yang HZ, Fang JY, Zou SZ (2010) Nano Lett 10:638

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 310151/2008-2) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for financial assistance to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermete Antolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antolini, E., Perez, J. The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. J Mater Sci 46, 4435–4457 (2011). https://doi.org/10.1007/s10853-011-5499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5499-3

Keywords

Navigation