Skip to main content

Advertisement

Log in

Consolidation by electrical resistance sintering of Ti powder

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, commercially pure Ti powder was consolidated by the electrical resistance sintering (ERS) technique. This consolidation technique consists of the application of pressure (around 100 MPa) to a powder mass at the same time that the powder is heated by the passage of an electric current of high intensity (around 10 kA), low voltage (around 5 V) and a frequency of 50 Hz. Several current intensities and dwell times were tested during the consolidation process. The work includes a microstructural study of the most relevant characteristics of the compacts. Furthermore, the obtained compacts were mechanically characterised by the measurement of their hardness distribution and by an indirect tensile test. For all the compacts, the average hardness and the strength resulting from the indirect tensile test are empirically related to the global porosity of the compact and the electric energy supplied during the consolidation process. This energy is a function of the intensity of the electric current and the dwell time. These empirical relationships can be useful to select the best process conditions. The results were compared with values obtained for specimens prepared with the same powder by the conventional powder-metallurgy route of cold die pressing and furnace sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Taylor GF (1933) Apparatus for making hard metal compositions. US Patent 1896854, Feb 1933

  2. Lenel FV (1955) J Met 7:158

    CAS  Google Scholar 

  3. Suzuki T, Saito S (1971) J Jpn Soc Powder Powder Metall 18:28

    Article  Google Scholar 

  4. Saito S, Ishitama T, Sawaoka A (1974) Bull Tokyo Inst Technol 120:137

    CAS  Google Scholar 

  5. Hara Z, Akechi K (1980) In: Kimura H, Izumi O (eds) Titanium ’80. Science and technology, proceedings of the 4th international conference on Ti, Kyoto, Japan, 19–22 May 1980. The Metallurgical Society of AIME, New York, p 2265

  6. Okazaki K (1994) Rev Part Mater 2:215

    CAS  Google Scholar 

  7. Istomina TI, Baidenko AA, Raichenko AI, Golberg MA, Svechkov AV (1983) Sov Powder Metall Met Ceram 22(11):957

    Article  Google Scholar 

  8. Burenkov GL, Raichenko AI, Suraeva M (1987) Sov Powder Metall Met Ceram 26(9):709

    Article  Google Scholar 

  9. Sukhov OV, Baidenko AA, Istomina TI, Raichenko AI, Popov VP, Svechkov AV, Golberg MA (1987) Sov Powder Metall Met Ceram 26(7):530

    Article  Google Scholar 

  10. Yokota M, Nagae T, Nose M (1998) Proceedings of the world congress PM’98, Granada, Spain, 18–22 Oct 1998. EPMA, Bellstone, Shrewsbury, p 284

  11. Moriguchi H, Tsuduki K, Ikegaya A (2000) Powder Metall 43(1):17

    CAS  Google Scholar 

  12. Groza JR, Zavaliangos A (2000) Mater Sci Eng A 287:171

    Article  Google Scholar 

  13. Montes JM, Rodríguez JA, Herrera EJ (2003) Rev Met Madrid 39:99 (in Spanish)

    Article  CAS  Google Scholar 

  14. Montes JM, Cintas J, Cuevas FG, Rodríguez JA (2004) Proceedings of Euro PM 2004, Vienna, Austria, 17–21 Oct 2004, vol 2. EPMA, Bellstone, Shrewsbury p 259

  15. Henriques VAR, Galvani ET, Petroni SLG, Paula MSM, Lemos TG (2010) J Mater Sci 45(21):5844. doi:https://doi.org/10.1007/s10853-010-4660-8

    Article  CAS  Google Scholar 

  16. Mao ZP, Ma J, Wang J, Sun B (2009) J Mater Sci 44(12):3265. doi:https://doi.org/10.1007/s10853-009-3438-3

    Article  CAS  Google Scholar 

  17. Tuncer N, Arslan G (2009) J Mater Sci 44(6):1477. doi:https://doi.org/10.1007/s10853-008-3167-z

    Article  CAS  Google Scholar 

  18. Li H, Yuan B, Gao Y, Chung CY, Zhu M (2009) J Mater Sci 44(3):875. doi:https://doi.org/10.1007/s10853-008-3193-x

    Article  CAS  Google Scholar 

  19. ASTM B 265-06a (2006) Standard specification for titanium and titanium alloy strip, sheet and plate. ASTM International, West Conshohocken, PA, USA

  20. ASM Handbook (1998) Metal powder technologies and applications, vol 7. ASM International, USA

    Google Scholar 

  21. Capua JR, Michot G (2006) Int J Fract 139:455

    Article  Google Scholar 

  22. Montes JM, Cuevas FG, Cintas J (2007) Metall Mater Trans B 38:957

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FEDER/MCyT, Madrid, and Junta de Andalucía for funding this research within the framework of the Projects MAT2007-61643 and P08-TEP-3537, respectively. The authors also wish to thank the technicians J. Pinto, M. Madrid and M. Sánchez (Univ. Seville, Spain) for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Montes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes, J.M., Rodríguez, J.A., Cuevas, F.G. et al. Consolidation by electrical resistance sintering of Ti powder. J Mater Sci 46, 5197–5207 (2011). https://doi.org/10.1007/s10853-011-5456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5456-1

Keywords

Navigation