Skip to main content
Log in

Neutron radiography study of hydrogen desorption in technical iron

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The purpose of the present study is to show the feasibility of examining hydrogen desorption in technical iron samples using neutron radiography at the ANTARES facility of the FRM II research reactor, Technische Universität München. It has been shown that this method is appropriate for in situ determination of hydrogen desorption for concentrations as low as 20 ppmH. Experiments were carried out in the temperature range from room temperature up to 260 °C. Measurement was based on direct comparison between electrochemically hydrogen-loaded iron samples and hydrogen-free reference samples at the same temperature. This enables the determination of hydrogen concentration as a function of time and temperature. Ex situ carrier gas hot extraction experiments using the same temperature–time profiles as the neutron radiography experiments have been used to calibrate the greyscale values of the radiographs to defined hydrogen concentrations. It can be stated that hydrogen desorption correlates with sample temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nelson HG (1983) In: Briant CL, Banerji SK (eds) Treatise on materials science and technology, vol 25. Academic, New York, p 275

    Google Scholar 

  2. Berkowitz J (1975) Hydrogen induced internal cracking of iron. State University of New York, Stony Brook, New York

    Google Scholar 

  3. Birnbaum HK (1995) Hydrogen related second phase embrittlement of solids. In: Gibala R, Hehemann RF (eds) Hydrogen embrittlement and stress corrosion cracking. ASM Int, Materials Park, p 153

    Google Scholar 

  4. Troiano AR (1960) Trans ASM 52:54

    Google Scholar 

  5. Stroe ME (2006) Hydrogen embrittlement of ferrous materials. Université Libre de Bruxelles, Brussels. https://doi.org/theses.ulb.ac.be/ETD-db/collection/available/ULBetd-03312006-122217/unrestricted/HydrogenEmbrittlementofFerrousMaterials.pdf. Accessed 08 Feb 2011

  6. Zapffe CA, Sims CE (1941) Trans AIME 145:225

    Google Scholar 

  7. Oriani RA (1987) Corrosion 43:390

    Article  CAS  Google Scholar 

  8. Oriani RA (1995) In: Gibala R, Hehemann RF (eds) Hydrogen embrittlement and stress corrosion cracking. ASM Int, Materials Park, pp 43–59

  9. Birnbaum HK, Sofronis P (1994) Mat Sci Eng A 176:191

    Article  CAS  Google Scholar 

  10. Petch NJ, Stables P (1952) Nature 169:842

    Article  Google Scholar 

  11. Geberich WW, Stauffer DD, Sofronis P (2008) In: Somerday B, Sofronis P, Jones R (eds) Effects of hydrogen on materials, 1st edn. ASM Int, Materials Park

  12. Dadfarnia M, Novak P, Ahn DC, Liu JB, Sofronis P, Johnson DD, Robertson IM (2010) Adv Mater 22:1128

    Article  CAS  Google Scholar 

  13. Olden V, Thaulow C, Johnson R (2008) Mater Des 29:1934

    Article  CAS  Google Scholar 

  14. Hirth JP (1980) Metall Trans 11A:861

    Article  CAS  Google Scholar 

  15. Quick NR, Johnson HH (1979) Metall Trans 10A:67

    Article  CAS  Google Scholar 

  16. Ried P, Gaber M, Beyer K, Müller R, Kipphardt H, Kannengiesser T (2011) Steel Res Int 82:14

    Article  CAS  Google Scholar 

  17. Robertson IM, Birnbaum HK (1986) Acta Metall Mater 34:353

    Article  CAS  Google Scholar 

  18. Barnoush A, Bies C, Vehoff H (2008) J Mater Res 24:1105

    Article  Google Scholar 

  19. Barnoush A, Zamanzade M, Vehoff H (2010) Scr Mater 62:242

    Article  CAS  Google Scholar 

  20. Bergers K, Camisão de Souza E, Thomas I, Mabho N, Flock J (2010) Steel Res Int 81:499

    Article  CAS  Google Scholar 

  21. Dabah E, Lisitsyn V, Eliezer D (2010) Mater Sci Eng A 527:4851

    Article  Google Scholar 

  22. Balaskó M, Sva E, Kuba A, Kiss Z, Rodek L, Nagy A (2005) Nucl Instrum Methods A 542:302

    Article  Google Scholar 

  23. Lehmann EH, Vontobel P, Kardjilov N (2004) Appl Radiat Isot 61:503

    Article  CAS  Google Scholar 

  24. Sakaguchi H, Kohzai A, Hatakeyama K, Fujine S, Yoneda K, Kanda K, Esaka T (2000) Int J Hydrog Energy 25:1205

    Article  CAS  Google Scholar 

  25. Sakaguchi H, Satake Y, Hatakeyama K, Fujine S, Yoneda K, Matsubayashi M, Esaka T (2003) J Alloy Compd 54:208

    Article  Google Scholar 

  26. Schröder A, Wippermann K, Mergel J, Lehnert W, Stolten D, Sanders T, Baumhöfer T, Sauer DU, Manke I, Kardjilov N, Hilger A, Schloes J, Bahnhart J, Hartnig C (2009) Electrochem Commun 11:1606

    Article  Google Scholar 

  27. Crank J (1975) The mathematics of diffusion. Clarendon, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Beyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, K., Kannengiesser, T., Griesche, A. et al. Neutron radiography study of hydrogen desorption in technical iron. J Mater Sci 46, 5171–5175 (2011). https://doi.org/10.1007/s10853-011-5450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5450-7

Keywords

Navigation