Skip to main content
Log in

Dynamic tests of cemented paste backfill: effects of strain rate, curing time, and cement content on compressive strength

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article investigates the compressive strength of cemented paste backfill (CPB) under dynamic loading. To accommodate the low impedance CPB, a modified split Hopkinson pressure bar (SHPB) system is adopted. In contrast to traditional solid steel transmitted bar, a hollow aluminum transmitted bar is introduced to reduce the impedance. With this system, the dynamic stress equilibrium is achieved, which guarantees the valid dynamic material testing condition. The dynamic tests are conducted for CPB with different cement contents and curing time. It is observed that: (1) for CPB with the same curing time and cement content, the dynamic strength increases with the strain rate, (2) for CPB with the same cement content, the dynamic strength increases with the curing time, and (3) for CPB with the same curing time and tested under similar strain rate, the dynamic strength increases with the percentage of cement. This observation can be understood by considering the hydration process of cements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Belem T, Benzaazoua M (2004) In: Villaescusa and Potvin (eds) The 5th International Symposium on Ground Support in Mining and Underground Construction. Taylor & Francis Group, Perth, Australia, p 637

  2. Landriault D, Lidkea W (1993) In: Bawden and Archibald (eds) Innovative mine design for the 21st century: Proceedings of the International Congress on Mine Design, Kingston, Canada, p 111

  3. Kesimal A, Yilmaz E, Ercikdi B (2004) Cem Concr Res 34:1817

    Article  CAS  Google Scholar 

  4. Kesimal A, Yilmaz E, Ercikdi B, Alp I, Deveci H (2005) Mater Lett 59:3703

    Article  CAS  Google Scholar 

  5. Klein K, Simon D (2006) Can Geotech J 43:310

    Article  CAS  Google Scholar 

  6. Fall M, Belem T, Samb S, Benzaazoua M (2007) J Mater Sci 42:3914. doi: https://doi.org/10.1007/s10853-006-0403-2

    Article  CAS  Google Scholar 

  7. Chong KP, Hoyt PM, Smith JW, Paulsen BY (1980) Int J Rock Mech Min Sci 17:35

    Article  Google Scholar 

  8. Cai M, Kaiser PK, Suorineni F, Su K (2007) Phys Chem Earth 32:907

    Article  Google Scholar 

  9. Kaiser PK, McCreath DR, Tannant DD (1996) Rockburst research handbook. CAMIRO Mining Division, Sudbury

  10. Kolsky H (1949) Proc R Soc A B62:676

    Google Scholar 

  11. Nemat-Nasser S (2000) In: Kuhn H and Medlin D (eds) ASM metals handbook, vol 8: mechanical testing and evaluation. ASM International, Materials Park, p 3

  12. Chen W, Zhang B, Forrestal MJ (1999) Exp Mech 39:81

    Article  CAS  Google Scholar 

  13. Luo H, Lu H, Leventis N (2006) Mech Time-Depend Mater 10:83

    Article  CAS  Google Scholar 

  14. Mulliken AD, Boyce MC (2006) Int J Solid Struct 43:1331

    Article  CAS  Google Scholar 

  15. Li QM, Meng H (2003) Int J Solid Struct 40:343

    Article  Google Scholar 

  16. Forrestal MJ, Wright TW, Chen W (2007) Int J Impact Eng 34:405

    Article  Google Scholar 

  17. Chen W, Lu F, Frew DJ, Forrestal MJ (2002) J Appl Mech 69:214

    Article  CAS  Google Scholar 

  18. Frew DJ, Forrestal MJ, Chen W (2002) Exp Mech 42:93

    Article  CAS  Google Scholar 

  19. Fu HC, Erki MA, Seckin M (1991) J Struct Eng 117:3645

    Article  Google Scholar 

  20. Bischoff PH, Perry SH (1991) Mater Struct 24:425

    Article  CAS  Google Scholar 

  21. Ercikdi B, Kesimal A, Cihangir F, Deveci H, Alp I (2009) Cem Concr Res 31:268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSERC/Discovery grant # 72031326 and NSERC/CRD grant # 364719 in association with Barrick Gold Corporation, Xstrata Copper Canada Ltd., and Inmet Mining Corporation. K.X. also acknowledges the financial support by the opening project (#Z110802) of State Key Laboratory of Science and Technology (Beijing Institute of Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiwen Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Xia, K. & Qiao, L. Dynamic tests of cemented paste backfill: effects of strain rate, curing time, and cement content on compressive strength. J Mater Sci 46, 5165–5170 (2011). https://doi.org/10.1007/s10853-011-5449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5449-0

Keywords

Navigation