Skip to main content
Log in

Estimation of dynamic fatigue strengths in brittle materials under a wide range of stress rates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper aims to statistically estimate the dynamic fatigue strength in brittle materials under a wide range of stress rates. First, two probabilistic models were derived on the basis of the slow crack growth (SCG) concept in conjunction with two-parameter Weibull distribution. The first model, Model I, is a conventional probabilistic delayed-fracture model based on a concept wherein the length of the critical crack growth due to SCG is enough larger than the initial crack length. For the second model, Model II, a new probabilistic model is derived on the basis of a concept wherein the critical cracks have widely ranging lengths. Next, a four-point bending test using a wide range of stress rates was performed for soda glass and alumina ceramics. We constructed fracture probability–strength–time diagrams (F–S–T diagrams) with the experimental results of both materials using both models. The F–S–T diagrams described using Model II were in good agreement with plots of the fracture strength and the fracture time of both materials more so than Model I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Evans AG (1974) Int J Fract 10(2):251

    Article  CAS  Google Scholar 

  2. Evans AG, Johnson H (1975) J Mater Sci 10:214. doi:https://doi.org/10.1007/BF00540345

    Article  CAS  Google Scholar 

  3. Futakawa M, Kikuchi K, Tanabe Y, Muto Y (1997) J Eur Ceram Soc 17:1573

    Article  CAS  Google Scholar 

  4. Barinov SM, Ivanov NV, Orlov SV, Shevchenko V (1998) Ceram Int 24:421

    Article  CAS  Google Scholar 

  5. Pan LS, Matsuzawa M, Horibe S (1998) Mater Sci Eng A 244:199

    Article  Google Scholar 

  6. Evans AG (1980) Int J Fract 16(6):485

    Article  CAS  Google Scholar 

  7. Seshadri SG, Srinivasan M, Weber GE (1982) J Mater Sci 17:1297. doi:https://doi.org/10.1007/BF00752238

    Article  CAS  Google Scholar 

  8. Guiu F, Reece MJ, Vaughan DAJ (1991) J Mater Sci 26:3275. doi:https://doi.org/10.1007/BF01124674

    Article  CAS  Google Scholar 

  9. Tanaka T, Nakayama H, Okabe N, Imamichi T (1995) Strength and crack growth behavior of sintered silicon nitride in cyclic fatigue. Cyclic fatigue in ceramics. Elsevier Science, Japan, p II345

    Google Scholar 

  10. Ping Z, Zhongqin L, Guanlong C, Ikeda K (2004) Int J Fatigue 26:1109

    Article  Google Scholar 

  11. Davidge RW, Mclaren JR, Tappin G (1973) J Mater Sci 8:1699. doi:https://doi.org/10.1007/BF00552179

    Article  CAS  Google Scholar 

  12. Aoki S, Ohata I, Ohnabe H, Sakata M (1983) Int J Fract 21:285

    Article  Google Scholar 

  13. Kokubo T, Ito S, Shigematsu M, Sakka S (1987) J Mater Sci 22:4067. doi:https://doi.org/10.1007/BF01133359

    Article  CAS  Google Scholar 

  14. Okabe N, Ikeda T (1991) Mater Sci Eng A 143:11

    Article  Google Scholar 

  15. Okabe N, Hirata H (1995) High temperature fatigue properties for some types of SiC and Si3N4. Cyclic fatigue in ceramics. Elsevier Science, Japan, p 245

    Google Scholar 

  16. Pfingsten T, Glien K (2006) J Eur Ceram Soc 26:3061

    Article  CAS  Google Scholar 

  17. Evans AG, Fuller ER (1974) Metall Trans 5:27

    Article  Google Scholar 

  18. Tokunaga H, Deng G, Ikeda K, Kaizu K (2005) Japan Soc Mech Eng A 71(712):1708

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, S., Watanabe, R. Estimation of dynamic fatigue strengths in brittle materials under a wide range of stress rates. J Mater Sci 46, 5056–5063 (2011). https://doi.org/10.1007/s10853-011-5428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5428-5

Keywords

Navigation