Skip to main content
Log in

Precipitate alterations in the heat-affected zone of a Grade 100 microalloyed steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microalloy precipitate alterations (particularly dissolution) in the heat-affected zone (HAZ) of a Grade 100 steel, microalloyed by titanium, niobium, and vanadium and produced in the form of a plate with a thickness of 8 mm, was examined both theoretically and experimentally. For theoretical analysis of precipitate dissolution, pairs of effective peak temperature and holding time were extracted from the thermal cycles of welding, and were superimposed on the Ashby and Easterling non-equilibrium solubility curves for different fractions of precipitate dissolution. Intersections between the effective Tt curves and the non-equilibrium solubility curves gave critical pairs of effective peak temperature and holding time for dissolution of different fractions of a precipitate, which resulted in the establishment of precipitate dissolution profiles in the HAZ. Experimental analysis of precipitate alterations was carried out using carbon extraction replicas in a transmission electron microscope. The theoretical analyses were in agreement with experimental results, showing that it is the dissolution of small Nb-rich particles that paves the way to grain growth in the coarse-grained HAZ. Reprecipitation was generally suppressed in the low heat-input weld sample. There was some reprecipitation in the higher heat-input weld samples. Coarsening of TiN did not occur in the HAZ, due to the large size of these particles in the steel examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. DeArdo AJ (1995) Modern thermomechanical processing of microalloyed steel: a physical metallurgy perspective. Iron & Steel Society, Pittsburgh, p 15

    Google Scholar 

  2. Tanaka T (1995) Science and technology of hot rolling process of steel. Iron & Steel Society, Pittsburgh, p 165

    Google Scholar 

  3. Pereloma EV, Bayley C, Boyd JD (1996) Mater Sci Eng A 210(1–2):16

    Google Scholar 

  4. Gladman T (1997) The physical metallurgy of microalloyed steels. The Institute of Materials, London

    Google Scholar 

  5. Poorhaydari K, Ivey DG (2009) Can Metall Q 48(4):443

    CAS  Google Scholar 

  6. Poorhaydari K, Ivey DG (2009) Can Metall Q 48(2):115

    CAS  Google Scholar 

  7. DeArdo AJ (2003) Int Mater Rev 48(6):371

    Article  CAS  Google Scholar 

  8. Ashby MF, Easterling KE (1982) Acta Metall 30(11):1969

    Article  CAS  Google Scholar 

  9. Ion JC, Easterling KE, Ashby MF (1984) Acta Metall 32(11):1949

    Article  CAS  Google Scholar 

  10. Easterling KE (1992) Introduction to the physical metallurgy of welding. Butterworth-Heinemann Ltd, Oxford

    Google Scholar 

  11. Poorhaydari K (2005) Microstructure and property examination of weld HAZ in Grade 100 microalloyed steel. Ph.D. Thesis, University of Alberta, Edmonton, Canada

  12. Poorhaydari K, Patchett BM, Ivey DG (2005) Estimation of cooling rate in the welding of plates with intermediate thickness. Weld J 84(10):149-s–155-s

    Google Scholar 

  13. Ruhle M (1995) In: ASM handbook vol 9. Metallography and microstructures. ASM International, Materials Park, OH, p 103

  14. Poorhaydari K, Ivey DG (2007) Mater Charact 58(6):544

    Article  CAS  Google Scholar 

  15. Suzuki S, Weatherly GC (1985) In: Gray JM, Ko T, Zhang SH, Wu BR, Xie XS (eds) Characterization of precipitates and grain growth in simulated HAZ thermal cycles of Ti–Nb bearing steel weldments. ASM International, China, p 675

    Google Scholar 

  16. Agren J (1990) Scand J Metall 19(1):2

    Google Scholar 

  17. Andersen I, Grong O (1995) Acta Metall Mater 43(7):2673

    Article  CAS  Google Scholar 

  18. Shome M, Sarma DS, Gupta OP, Mohanty ON (2003) ISIJ Int 43(9):1431

    Article  CAS  Google Scholar 

  19. Moon J, Jeong H, Lee J, Lee C (2008) Mater Sci Eng A 483–484:633

    Google Scholar 

  20. Moon J, Lee C (2009) Acta Mater 57(7):2311

    Article  CAS  Google Scholar 

  21. Wang HR, Wang W (2009) J Mater Sci 44(2):591. doi:10.1007/s10853-008-3069-0

    Article  Google Scholar 

  22. Fossaert C, Rees G, Maurickx T, Bhadeshia HKDH (1995) Metall Mater Trans A 26A(1):21

    Article  CAS  Google Scholar 

  23. Palmiere EJ, Garcia CI, Ardo AJD (1994) Metall Mater Trans A 25(2):277

    Article  Google Scholar 

  24. Liao FC, Liu S, Olson DL (1994) Effect of titanium nitride precipitates on the weldability of nitrogen enhanced Ti–V microalloyed steels. Iron and Steel Society, Inc., Pittsburgh, Pennsylvania, p 511

  25. McGurk TE, Speer JG, Matlock DK (2007) Mater Sci Technol 6:347

    Google Scholar 

  26. Hulka K, Heisterkamp F (1998) Mater Sci Forum 284–286:343

    Article  Google Scholar 

  27. Dolby RE (1983) Met Technol 10(9):349

    CAS  Google Scholar 

  28. Collins LE, Klein R, Bai D (2009) Can Metall Q 48(3):261

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and Evraz Inc. NA for financial support and steel plates (Evraz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kioumars Poorhaydari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poorhaydari, K., Ivey, D.G. Precipitate alterations in the heat-affected zone of a Grade 100 microalloyed steel. J Mater Sci 46, 4953–4963 (2011). https://doi.org/10.1007/s10853-011-5412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5412-0

Keywords

Navigation