Skip to main content
Log in

Magnetoelectric properties of CoFe2O4–Pb(Zr0.52Ti0.48)O3 multilayered composite film via sol–gel method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CoFe2O4–Pb(Zr0.52Ti0.48)O3 (CFO–PZT) multilayered composite film was prepared on Pt/Ti/SiO2/Si substrate via a sol–gel method and spin-coating technique. Results show that PZT and CFO phases exist in the composite film, calcined at 700 °C, besides substrate phase, and no obvious impurity phases can be detected. The composite film exhibits layered structure with obvious boundary between CFO and PZT films. Ferroelectric and ferromagnetic properties were simultaneously observed in the composite film, evidencing the ferroelectric and ferromagnetic properties in the composite film. The composite film exhibits both good magnetic and electric properties, as well as, magnetoelectric (ME) effect. The saturation magnetization value of the composite film is lower than that of the pure CFO film derived by the same processing as a result of the effect of the nonferromagnetic PZT layers. Ferroelectric hysteresis loops reveal that saturated polarization and remanent polarization of the composite film are lower than those of the pure PZT films. The composite film exhibits a very large ME effect, which makes the composite film attractive for technological applications as devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Spaldin NA, Fiebig M (2005) Science 309:391

    Article  CAS  Google Scholar 

  2. Dho XQJ, Kim H, MacManus-Driscoll JL, Blamire MG (2006) Adv Mater 18:1445

    Article  CAS  Google Scholar 

  3. Nan CW (1994) Phys Rev B 50:6082

    Article  CAS  Google Scholar 

  4. Yan L, Yang YD, Wang ZG, Xing ZP, Li JF, Viehland D (2009) J Mater Sci 44:5080. doi:https://doi.org/10.1007/s10853-009-3679-1

    Article  CAS  Google Scholar 

  5. Deng CY, Zhang Y, Ma J, Lin YH, Nan CW (2008) Acta Mater 56:405

    Article  CAS  Google Scholar 

  6. Wang J et al (2003) Science 299:1719

    Article  CAS  Google Scholar 

  7. Zheng H et al (2004) Science 303:661

    Article  CAS  Google Scholar 

  8. Levin I, Li JH, Slutsker J, Roytburd AL (2006) Adv Mater 18:2044

    Article  CAS  Google Scholar 

  9. Zhou JP, He HC, Shi Z, Nan CW (2006) Appl Phys Lett 88:013111

    Article  Google Scholar 

  10. He HC, Wang J, Zhou JP, Nan CW (2007) Adv Funct Mater 17:1333

    Article  CAS  Google Scholar 

  11. He HC, Zhou JP, Wang J, Nan CW (2006) Appl Phys Lett 89:052904

    Article  Google Scholar 

  12. Wang Y, Nan CW (2006) Appl Phys Lett 89:052903

    Article  Google Scholar 

  13. Zhan Q et al (2006) Appl Phys Lett 89:172902

    Article  Google Scholar 

  14. Zhang Y, Deng CY, Ma J, Lin YH, Nan CW (2008) Appl Phys Lett 92:062911

    Article  Google Scholar 

  15. Xie SH, Li JY, Qiao Y, Liu YY, Lan LN, Zhou YC, Tan ST (2008) Appl Phys Lett 93:222904

    Article  Google Scholar 

  16. Fina I, Dixa N, Fàbrega L, Sánchez F, Fontcuberta J (2010) Thin Solid Films 518:4634

    Article  CAS  Google Scholar 

  17. Delgado E, Ostos C, Martínez-Sarrión ML, Mestres L, Lederman D, Prieto P (2009) Mater Chem Phys 113:702–706

    Article  CAS  Google Scholar 

  18. Wan JG, Wang XW, Wu YJ, Zeng M, Wang Y, Jiang H, Zhou WQ, Wang GH, Liu JM (2005) Appl Phys Lett 86:122501

    Article  Google Scholar 

  19. Liu M, Li X, Lou J, Zheng SJ, Du K, Sun NX (2007) J Appl Phys 102:083911

    Article  Google Scholar 

  20. Wan JG, Zhang H, Wang XW, Pan DY, Liu JM, Wang GH (2006) Appl Phys Lett 89:122914

    Article  Google Scholar 

  21. Patil DR, Chougule BK (2009) J Mater Sci 20:398. doi:https://doi.org/10.1007/s10854-008-9742-x

    CAS  Google Scholar 

  22. Chen W, Chen XF, Wang ZH, Zhu W, Tan OK (2009) J Mater Sci 44:4939. doi:https://doi.org/10.1007/s10853-009-3754-7

    Article  CAS  Google Scholar 

  23. Haertling GH (1999) J Am Ceram Soc 82:797

    Article  CAS  Google Scholar 

  24. Boomgaard JVD, Born RAJ (1978) J Mater Sci 13:1538. doi:https://doi.org/10.1007/BF00553210

    Article  Google Scholar 

  25. Boomgaard JVD, Run AMJGV, Suchetelene JV (1976) Ferroelectrics 10:295

    Article  Google Scholar 

  26. Srinivasan G, Rasmussen ET, Gallegos J, Srinivasan R, Bokhan YI, Laletin VM (2001) Phys Rev B 64:214408

    Article  Google Scholar 

  27. Sathaye SD, Patil KR, Kulkarni SD, Bakre PP, Pradhan SD, Sarwade BD, Shintre SN (2003) J Mater Sci 38:29. doi:https://doi.org/10.1023/A:1021101529855

    Article  CAS  Google Scholar 

  28. Zeng M, Wan JG, Wang Y, Yu H, Liu JM, Jiang XP, Nan CW (2004) J Appl Phys 95:8069

    Article  CAS  Google Scholar 

  29. Mazumder S, Bhattacharyya GS (2004) Ceram Int 30:389

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of this research from Specialized Research Fund for the Doctoral Program of Higher Education of China (200803591037) and the Scientific Research Fund of Hefei University of Technology for Doctor Degree (GDBJ2008-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Yu, G.Y., Su, H.L. et al. Magnetoelectric properties of CoFe2O4–Pb(Zr0.52Ti0.48)O3 multilayered composite film via sol–gel method. J Mater Sci 46, 4710–4714 (2011). https://doi.org/10.1007/s10853-011-5381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5381-3

Keywords

Navigation