Journal of Materials Science

, Volume 46, Issue 11, pp 3669–3686 | Cite as

A review on nano-TiO2 sol–gel type syntheses and its applications

  • D. P. Macwan
  • Pragnesh N. DaveEmail author
  • Shalini Chaturvedi


Nanomaterials, defined as particles ranging from 1 to 100 nm diameter, have become widely utilized because of their unique physicochemical properties. Among those nanoparticles, titanium dioxide (TiO2) is frequently used in the production of paints, paper, plastics, welding rod-coating material, cosmetics, etc. TiO2 is the most commonly used semiconductor photocatalyst. Among the different nanomaterials, it is the most studied. Activated by UV-A irradiation, its photocatalytic properties have been utilized in various applications. A wealth of information on TiO2 photocatalytic in activation of bacteria has been acquired over the last 20 years. Hence, in this review article we have described synthesis methods mainly sol–gel type method like sol–gel method, ultrasonic-assisted sol–gel method, microemulsion method, colloidal synthesis, and also other method are discussed like solvo-thermal method, thermal plasma process, supersonically expanded plasma jet method, induction plasma torch, reactive plasma processing, plasma electrolytic oxidation, hydrolysis method, thermohydrolysis method, coprecipitation method, citrate–nitrate autocombustion method, etc. Also applications of TiO2 like medical applications, environmental application, sensor application, photocatalytic applications, and also its health impact for long-term exposure are discussed.


TiO2 Chemical Oxygen Demand PANI TiO2 Particle Plasma Torch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Water Res 42:4591Google Scholar
  2. 2.
    Beydoun D, Amal R, Low G, Mcevoy S (1999) J Nanoparticle Res 1:439Google Scholar
  3. 3.
    Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Sep Purif Methods 28:1Google Scholar
  4. 4.
    Sthathatos E, Tsiourvas D, Lianos P (1999) J Colloids Surf A 149:49Google Scholar
  5. 5.
    Comparelli R, Fanizza E, Curri ML, Cozzoli PD, Mascolo G, Passino R, Agostiano A (2005) Appl Catal B 55:81Google Scholar
  6. 6.
    Vijay M, Selvarajan V, Sreekumar KP, Yu J, Liu S, Ananthapadmanabhan PV (2009) Sol Energy Mater Sol Cells 93:1540Google Scholar
  7. 7.
    Seeley Z, Choi YJ, Bose S (2009) Sens Actuators B 140:98Google Scholar
  8. 8.
    Gianluca L, Bono A, Krishnaiah JG, Collin D (2008) J Hazard Mater 157(2–3):209Google Scholar
  9. 9.
    Meacock G, Taylor KDA, Knowles M, Himonides A (1997) J Sci Food Agric 73(2):221Google Scholar
  10. 10.
    Yu H-F, Zhang Z-W, Hu F-C (2008) J Alloys Compd 465:484Google Scholar
  11. 11.
    Carp O, Huisman CL, Reller A (2004) Progr Solid State Chem 32:33Google Scholar
  12. 12.
    Gaya UI, Abdullah AH (2008) J Photochem Photobiol C 9:1Google Scholar
  13. 13.
    Patil KC, Hegde MS, Rattan T, Aruna ST (2008) Chemistry of nanocrystalline materials: combustion synthesis, properties and applications. World Scientific, London, pp 179–209Google Scholar
  14. 14.
    Gerven TV, Mul G, Moulijn J, Stankiewicz A (2007) Chem Eng Proc 46:781Google Scholar
  15. 15.
    Li J-G, Kamiyama H, Wang X-H, Moriyoshi Y, Ishigaki T (2006) J Eur Ceram Soc 26:423Google Scholar
  16. 16.
    Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV (2007) J Mater Chem 17(1):95Google Scholar
  17. 17.
    Reddy MP, Venugopal A, Subrahmanyam M (2007) Water Res 41:379Google Scholar
  18. 18.
    Rehman S, Ullah R, Butt AM, Gohar ND (2009) J Hazard Mater 170:560Google Scholar
  19. 19.
    Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuch K (2000) J Mol Catal A 161:205Google Scholar
  20. 20.
    Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Appl Catal B 42:403Google Scholar
  21. 21.
    Ghorai TK, Dhak D, Biswas SK, Dalai S, Pramanik P (2007) J Mol Catal A 273:224Google Scholar
  22. 22.
    Babelon P, Dequidt AS, Mostefa-Sba H, Bourgeois S, Sibillot P, Sacilotti M (1998) Thin Solid Films 322:63Google Scholar
  23. 23.
    Kim B-H, Lee J-Y, Choa Y-H, Higuchi M, Mizutani N (2004) Mater Sci Eng B 107:289Google Scholar
  24. 24.
    Okuyama K, Shimada M, Fujimoto T, Maekawa T, Nakaso K, Seto T (1998) J Aerosol Sci 29(1):S907Google Scholar
  25. 25.
    Gu D-E, Yang B-C, Hu Y-D (2008) Catal Commun 9:1472Google Scholar
  26. 26.
    Su C, Hong BY, Tseng CM (2004) Catal Today 96:119Google Scholar
  27. 27.
    Sun J, Wang X, Sun J, Sun R, Sun S, Qiao L (2006) J Mol Catal A 260:241Google Scholar
  28. 28.
    Rengaraj S, Li XZ, Tanner PA, Pan ZF, Pang GKH (2006) J Mol Catal A 247:36Google Scholar
  29. 29.
    Yu H, Zheng X, Yin Z, Tao F, Fang B, Hou K (2007) Chin J Chem Eng 15(6):802Google Scholar
  30. 30.
    Liu S, Yang J-H, Choy J-H (2006) J Photochem Photobiol A 179:75Google Scholar
  31. 31.
    Ding X, An T, Li G, Zhang S, Chen J, Yuan J, Zhao H, Chen H, Sheng G, Fu J (2008) J Colloid Interface Sci 320(2):501Google Scholar
  32. 32.
    Li Y, Peng S, Jiang F, Lu G, Li S (2007) J Serb Chem Soc 72(4):393Google Scholar
  33. 33.
    Liao DL, Badour CA, Liao BQ (2008) J Photochem Photobiol A 194:11Google Scholar
  34. 34.
    Rengaraj S, Li XZ (2006) Int J Environ Pollut 27(1/2/3):20Google Scholar
  35. 35.
    Xu A-W, Gao Y, Liu H-Q (2002) J Catal 207:151Google Scholar
  36. 36.
    Liu G, Zhang X, Xu Y, Niu X, Zheng L, Ding X (2005) Chemosphere 59:1367Google Scholar
  37. 37.
    Xin B, Wang P, Ding D, Liu J, Ren Z, Fu H (2008) Appl Surf Sci 25(4):2569Google Scholar
  38. 38.
    Bu S, Jin Z, Liu X, Yin T, Cheng Z (2006) J Mater Sci 41(7):2067. doi: 10.1007/s10853-006-8000-y Google Scholar
  39. 39.
    Colmenares JC, Aramendia MA, Marinas A, Marinas JM, Urbano FJ (2006) Appl Catal A 306:120Google Scholar
  40. 40.
    Campostrini R, Ischia M, Palmisano L (2003) J Therm Anal Calorim 71(3):997Google Scholar
  41. 41.
    Campostrini R, Ischia M, Palmisano L (2003) J Therm Anal Calorim 71(3):1011Google Scholar
  42. 42.
    Campostrini R, Ischia M, Palmisano L (2004) J Therm Anal Calorim 75(3):13Google Scholar
  43. 43.
    Campostrini R, Ischia M, Palmisano L (2004) J Therm Anal Calorim 75(1):25Google Scholar
  44. 44.
    Crisan M, Braileanu A, Raileanu M, Zaharescu M, Crisan D, Dragan N, Anastasescu M, Ianculescu A, Nitoi I, Marinescu VE, Hodorogea SM (2008) J Non-Cryst Solids 354:705Google Scholar
  45. 45.
    Fan X, Chen X, Zhu S, Li Z, Yu T, Ye J, Zou Z (2008) J Mol Catal A 284:155Google Scholar
  46. 46.
    Gombac V, Rogatis LD, Gasparotto A, Vicario G, Montini T, Barreca D, Balducci G, Fornasiero P, Tondello E, Graziani M (2007) Chem Phys 339:111Google Scholar
  47. 47.
    Li XZ, Li FB, Yang CL, Ge WK (2001) J Photochem Photobiol A 141:209Google Scholar
  48. 48.
    Li Y, White TJ, Lim SH (2004) J Solid State Chem 177(4–5):1372Google Scholar
  49. 49.
    Peng A, Xie E, Jia C, Jiang R, Lin H (2005) Mater Lett 59(29–30):3866Google Scholar
  50. 50.
    Saif M, Abdel-Mottaleb MSA (2007) Inorg Chim Acta 360:2863Google Scholar
  51. 51.
    Shi J-W, Zheng J-T, Hu Y, Zhao Y-C (2007) Mater Chem Phys 106:247Google Scholar
  52. 52.
    Sivakumar S, Krishna PP, Makundan P, Warrier KGK (2002) Mater Lett 57(2):330Google Scholar
  53. 53.
    Srinivasan SS, Wade SJ, Stefanakos EK, Goswami Y (2006) J Alloys Compd 424:322Google Scholar
  54. 54.
    Stir M, Nicula R, Burkel E (2006) J Eur Ceram Soc 26:1547Google Scholar
  55. 55.
    Watson SS, Beydoun D, Scott JA, Amal R (2003) Chem Eng J 95(1):213Google Scholar
  56. 56.
    Wilke K, Breuer HD (1999) J Photochem Photobiol A 121:49Google Scholar
  57. 57.
    Xu W, Hu W, Li M, Wen C (2006) Mater Lett 60(13–14):1575Google Scholar
  58. 58.
    Yang Y, Li X-J, Chen J-T, Wang L-Y (2004) J Photochem Photobiol A 163:517Google Scholar
  59. 59.
    Zaleska A, Sobczak JW, Grabowska E (2008) J Hupka Appl Catal B 78:92Google Scholar
  60. 60.
    Zhang X, Liu Q (2008) Mater Lett 62:2589Google Scholar
  61. 61.
    Peng F, Cai L, Huang L, Yu H, Wang H (2008) J Phys Chem Solids 69(7):1657Google Scholar
  62. 62.
    Peng F, Cai L, Huang L, Yu H, Wang H (2008) J Solid State Chem 181:130Google Scholar
  63. 63.
    Feng X, Wang Q, Wang G, Qiu F (2006) Chin J Catal 27(3):195Google Scholar
  64. 64.
    Wang F, Shi Z, Gong F, Jiu J, Adachi M (2007) Chin J Chem Eng 15(5):754Google Scholar
  65. 65.
    Zhiyu W, Haifeng C, Peisong T, Weiping M, Fuan Z, Guodong Q, Xianping F (2006) Colloids Surf A 289:207Google Scholar
  66. 66.
    Zhu J, Deng Z, Chen F, Zhang J, Chen H, Anpo M, Huang J, Zhang L (2006) Appl Catal B 62:329Google Scholar
  67. 67.
    Bettinelli M, Dallacasa V, Falcomer D, Fornasiero P, Gombac V, Montini T, Romano L, Speghini A (2007) J Hazard Mater 146:529Google Scholar
  68. 68.
    Liu C, Tanga X, Moa C, Qiang Z (2008) J Solid State Chem 181(4):913Google Scholar
  69. 69.
    Tanaka K, Hisanaga T, Harada K (1989) J Photochem Photobiol A 48:155Google Scholar
  70. 70.
    Horikawa T, Katoh M, Tomida T (2008) Microporous Mesoporous Mater 110:397Google Scholar
  71. 71.
    Chen L-C, Huang C-M, Tsai F-R (2007) J Mol Catal A 265:133Google Scholar
  72. 72.
    Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J (2008) Dyes Pigm 77:327Google Scholar
  73. 73.
    Sun J, Qiao L, Sun S, Wang G (2008) J Hazard Mater 155:312Google Scholar
  74. 74.
    Lee A-C, Lin R-H, Yang C-Y, Lin M-H, Wang W-Y (2007) Mater Chem Phys 109(2–3):275Google Scholar
  75. 75.
    Jeon MS, Yoon WS, Joo H, Lee TK, Lee H (2000) Appl Surf Sci 165:209Google Scholar
  76. 76.
    Oh SM, Ishigaki T (2004) Thin Solid Films 457:186Google Scholar
  77. 77.
    Kakati M, Bora B, Sarma S, Sripathi T, Deshpande U, Dubey A, Ghosh G, Das AK (2008) Vacuum 82:833Google Scholar
  78. 78.
    Kitazawa S (2004) Jpn J Appl Phys 43:6335Google Scholar
  79. 79.
    Ohshima T, Nakashima S, Ueda T, Kawasaki H, Suda Y, Ebihara K (2006) Thin Solid Films 106:506Google Scholar
  80. 80.
    Thareja RK, Sharma AK (2006) Laser Part Beams 24:311Google Scholar
  81. 81.
    Belkind A, Zhu W, Lopez J, Becker K (2006) Plasma Sources Sci Technol 15:S17Google Scholar
  82. 82.
    Matsushima Y, Yamazaki T, Maeda K, Noma T, Suzuki T (2006) J Am Ceram Soc 89(3):799Google Scholar
  83. 83.
    Nakamura M, Kato S, Aoki T, Sirghi L, Hatanaka Y (2001) Thin Solid Films 401:138Google Scholar
  84. 84.
    Borras A, Cotrino J, Gonzalez-Elipe AR (2007) J Electrochem Soc 154:152Google Scholar
  85. 85.
    Li C-J, Yang G-J, Wang Z (2003) Mater Lett 57:2130Google Scholar
  86. 86.
    Jang HD, Kim S-K (2001) Mater Res Bull 36:627Google Scholar
  87. 87.
    Tung WS, Daoud WA (2008) J Colloid Interface Sci 326:283Google Scholar
  88. 88.
    Körösi L, Dékány I (2006) Colloids Surf A 280:146Google Scholar
  89. 89.
    Suslick KS (1990) Science 247:1439Google Scholar
  90. 90.
    Koda S, Tanaka K, Sakamoto H, Matsuoka T, Nomura H (2004) J Phys Chem A 108:11609Google Scholar
  91. 91.
    Ramakrishna G, Singh AK, Palit DP, Ghosh HN (2004) J Phys Chem B 108:4775Google Scholar
  92. 92.
    Neppolian B, Jung H, Choi H, Lee JH, Kang JW (2002) Water Res 36:4699Google Scholar
  93. 93.
    Neppolian B, Park JS, Choi H (2004) Ultrason Sonochem 11:273Google Scholar
  94. 94.
    Koda S, Kimura T, Kondo T, Mitome H (2003) Ultrason Sonochem 10(3):149Google Scholar
  95. 95.
    Neppolian B, Wang Q, Jung H, Choi H (2008) Ultrason Sonochem 15(4):649Google Scholar
  96. 96.
    Hong S-S, Lee MS, Hwang H-S, Lim K-T, Park S-S, Ju C-S, Lee G-D (2003) Sol Energy Mater Sol Cells 80(3):273Google Scholar
  97. 97.
    Mejiá MI, Mariń JM, Restrepo G, Pulgariń C, Mielczarski E, Mielczarski J, Arroyo Y, Lavanchy J-C, Kiwi J (2009) Appl Catal B 91:481Google Scholar
  98. 98.
    Payakgul W, Mekasuwandumrong O, Pavarajarn V, Praserthdam P (2005) Ceram Int 31:391Google Scholar
  99. 99.
    Supphasrirongjaroen P, Praserthdam P, Panpranot J, Na-Ranong D, Mekasuwandumrong O (2008) Chem Eng J 138:622Google Scholar
  100. 100.
    Kang M, Lee S-Y, Chung C-H, Cho SM, Han GY, Kim B-W, Yoon KJ (2001) J Photochem Photobiol A 144:185Google Scholar
  101. 101.
    Kang M, Ko Y-R, Jeon M-K, Lee S-C, Choung S-J, Park J-Y, Sung K, Choi S-H (2005) J Photochem Photobiol A 173:128Google Scholar
  102. 102.
    Ku Y, Ma C, Shen Y (2001) Appl Catal B 34:181Google Scholar
  103. 103.
    Dong Y, Bai Z, Liu R, Zhu T (2007) Catal Today 126:320Google Scholar
  104. 104.
    Leea J-E, Ohb S-M, Parka D-W (2004) Thin Solid Films 457:230Google Scholar
  105. 105.
    Kakati M, Bora B, Deshpande UP, Phase DM, Sathe V, Lalla NP, Shripathi T, Sarma S, Joshi NK, Das AK (2009) Thin Solid Films 518(1/2):84Google Scholar
  106. 106.
    Liu B, Torimoto T, Yoneyama H (1998) J Photochem Photobiol A 115:227Google Scholar
  107. 107.
    Kasuga T, Hiramatsu M, Hirano M, Hosono A, Oyamada K (1997) J Mater Res 12(3):607Google Scholar
  108. 108.
    Zhu Y, Ding C (2000) J Eur Ceram Soc 20(2):127Google Scholar
  109. 109.
    Matin N, Rousselot C, Rondot D, Palmino F, Mercier R (1997) Thin Solid Films 300(1/2):113Google Scholar
  110. 110.
    Mandl S, Thorwarth G, Schreck M, Stritzker B, Rauschenbach B (2000) Surf Coat Technol 125(1–3):84Google Scholar
  111. 111.
    Li Y-L, Ishigaki T (2002) Thin Solid Films 407(1–2):79Google Scholar
  112. 112.
    Padmanabhan PVA, Sreekumar KP, Thiyagarajan TK, Satpute RU, Bhanumurthy K, Sengupta P, Dey GK, Warrier KGK (2006) Vaccum 80(11–12):1252Google Scholar
  113. 113.
    Wei D, Zhou Y, Jia D, Wang Y (2008) Appl Surf Sci 254:1775Google Scholar
  114. 114.
    Zhu YC, Huang MH, Xia JY, Ding CX (1997) J Korean Vac Soc 6(S1):23Google Scholar
  115. 115.
    Powder Diffraction File, No. 18-1402 (1983) Inorganic volume, no. PDIS-22IRB, published by the JCPDS International Center for Diffraction Data, 1601 Park Lane, Swarthmore, Pennsylvania, 19081 USAGoogle Scholar
  116. 116.
    Zhu YC, Ding CX (1999) Nanostrut Mater 11(3):319Google Scholar
  117. 117.
    Kosmulski M, Mczkaa E, Januszc W, Rosenholmb JB (2002) Adv Colloid Interface Sci 250(1):99Google Scholar
  118. 118.
    Perego C, Revel R, Durupthy O, Cassaignon S, Jolivet JP (2010) Solid State Sci 12(6):989Google Scholar
  119. 119.
    Imagawa H, Tanaka T, Takahashi N, Matsunaga S, Suda A, Shinjoh H (2007) J Catal 251:315Google Scholar
  120. 120.
    Pechini M (1967) U.S. Patent #3,330,697Google Scholar
  121. 121.
    Choi Y, Seeley Z, Bandyopadhyay A, Bose S, Akbar S (2007) Sens Actuators B 124:111Google Scholar
  122. 122.
    Uddin MJ, Cesano F, Bonino F, Bordiga S, Spoto G, Scarano D, Zecchina A (2007) J Photochem Photobiol A 189(2):286Google Scholar
  123. 123.
    Uddin MJ, Cesano F, Scarano D, Bonino F, Agostini G, Spoto G, Bordiga S, Zecchina A (2008) J Photochem Photobiol A 199(1):64Google Scholar
  124. 124.
    Liu Y, Liang P, Guo L (2005) Talanta 68:25Google Scholar
  125. 125.
    Kalfa OM, ınkaya OY, Turker AR (2009) J Hazard Mater 166:455Google Scholar
  126. 126.
    Yang WE, Hsu ML, Lin MC, Chen ZH, Chen LK, Huang HH (2009) J Alloys Compd 479:642Google Scholar
  127. 127.
    Song M, Pan C, Chen C, Li J, Wang X, Gu Z (2008) Appl Surf Sci 255:610Google Scholar
  128. 128.
    Zhang Z, Yuan Y, Fang Y, Liang L, Ding H, Jin L (2007) Talanta 73(3):523Google Scholar
  129. 129.
    Kuo CN, Chen HF, Lin JN, Wan BZ (2007) Catal Today 122:270Google Scholar
  130. 130.
    Chen J, Liu M, Zhang L, Zhang J, Jin L (2003) Water Res 37:3815Google Scholar
  131. 131.
    Yu H, Zhang K, Rossi C (2007) J Photochem Photobiol A 188:65Google Scholar
  132. 132.
    Zheng J, Li G, Ma X, Wang Y, Wu G, Cheng Y (2008) Sens Actuators B 133:374Google Scholar
  133. 133.
    Bozzi A, Yuranova T, Guasaquillo LD, Kiwi J (2005) J Photochem Photobiol A 174:156Google Scholar
  134. 134.
    Meen TH, Water W, Chen WR, Chao SM, Ji LW, Huang CJ (2009) J Phys Chem Solids 70:472Google Scholar
  135. 135.
    Radhakrishnan S, Siju CR, Mahanta D, Patil S, Madras G (2009) Electrochim Acta 54:1249Google Scholar
  136. 136.
    Huang S, Chueh PJ, Lin YW, Shih TS, Chuang SM (2009) Toxicol Appl Pharmacol 241(2):182Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • D. P. Macwan
    • 1
  • Pragnesh N. Dave
    • 2
    Email author
  • Shalini Chaturvedi
    • 2
  1. 1.Department of Chemical EngineeringInstitute of Nirma UniversityAhmedabadIndia
  2. 2.Department of ChemistryKrantiguru Shyamji Krishna Verma Kachchh UniversityBhujIndia

Personalised recommendations