Skip to main content
Log in

Hot deformation behavior of an 8% Cr cold roller steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An 8% Cr cold roller steel was compressed in the temperature range 900–1200 °C and strain rate range 0.01–10 s−1. The mechanical behavior has been characterized using stress–strain curve analysis, kinetic analysis, processing maps, etc. Metallographic investigation was performed to evaluate the microstructure evolution and the mechanism of flow instability. It was found that the work hardening rate and flow stress decreased with increasing deformation temperature and decreasing strain rate in 8% Cr steel; the efficiency of power dissipation decreased with increasing Z value; flow instability was observed at higher Z-value conditions and manifested as flow localization near the grain boundary. The hot deformation equation and the dependences of critical stress for dynamic recrystallization and dynamic recrystallization grain size on Z value were obtained. The suggested processing window is in the temperature range 1050–1200 °C and strain rate range 0.1–1 s−1 in the hot processing of 8% Cr steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ray AK, Mishra KK, Das G (2000) Eng Fail Anal 7:55

    Article  CAS  Google Scholar 

  2. Nishida M, Suemune K, Nonaka Y (1990) Iron Steel Eng 67:49

    CAS  Google Scholar 

  3. Bodnar RL, Minfa Lin, Hansen SS (1993) Iron & Steelmaker 20:65

    CAS  Google Scholar 

  4. Liu XL, Zhang HK (2008) Heat Treat 23:16 (in Chinese)

    Google Scholar 

  5. Zhao X, Li WP, Liu DF (2004) Heavy Cast Forg 105:38 (in Chinese)

    Google Scholar 

  6. Wang CY, Wang XJ, Chang H (2007) Mater Sci Eng A 464:52

    Article  Google Scholar 

  7. Menon SS, Rack HJ (2001) Mater Sci Eng A 297:244

    Article  Google Scholar 

  8. Park NK, Yeom JT, Na YS (2002) J Mater Process Technol 130–131:540

    Article  Google Scholar 

  9. Prasad YVRK, Sasidhara S, Sikka VK (2000) Intermetallics 8:987

    Article  CAS  Google Scholar 

  10. Venugopal S, Sivaprasad PV, Vasudevan M (1995) J Mater Process Technol 59:343

    Article  Google Scholar 

  11. Sakai T, Jonas JJ (1984) Acta Metall 32:189

    Article  CAS  Google Scholar 

  12. Sellars CM (1900) In: Yue Sed Proceedings of the International Conference on Mathematical Modelling of Hot Rolling of Steel. CIMM, Hamilton

  13. Lu YH, Fu RD, Qiu L (2007) Trans Mater Heat Treat 28:69 (in Chinese)

    CAS  Google Scholar 

  14. Medina SF, Hernandez CA (1996) Acta Mater 44:137

    Article  CAS  Google Scholar 

  15. Poliak EI, Jonas JJ (2003) ISIJ Int 43:684

    Article  CAS  Google Scholar 

  16. Najafizadeh A, Jonas JJ (2006) ISIJ Int 46:1679

    Article  CAS  Google Scholar 

  17. Prasad YVRK, Sasidhara S (1997) Hot working guide: a compendium of processing maps. American Society for Materials International, Materials Park, p 10–24

    Google Scholar 

  18. Ponge D, Gottstein G (1998) Acta Metall 46:69

    CAS  Google Scholar 

  19. Jafari M, Najafizadeh A (2009) Mater Sci Eng A 501:16

    Article  Google Scholar 

  20. Kim SI, Yoo YC (2001) Mater Sci Eng A 311:108

    Article  Google Scholar 

  21. Liu JT, Chang HB, Wu RH (2000) Mater Character 45:175

    Article  CAS  Google Scholar 

  22. Tan SP, Wang ZH, Cheng SC (2010) Int J Miner Metall Mater 17:167

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research was supported by the Science Research and Development of Qinhuangdao (201001A109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Wantang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ping, J., Wantang, F., Zhenhua, W. et al. Hot deformation behavior of an 8% Cr cold roller steel. J Mater Sci 46, 4654–4659 (2011). https://doi.org/10.1007/s10853-011-5371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5371-5

Keywords

Navigation