Skip to main content
Log in

Dielectric relaxation behavior of CdS nanoparticles and nanowires

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric relaxation and scaling behavior of CdS nanoparticles and nanowires were investigated in the frequency range 102–106 Hz and in the temperature range 373–573 K by complex impedance spectroscopy and electric modulus spectroscopy. Studies on the complex permittivity revealed that the dielectric relaxation in CdS nanostructures deviates from Debye like behavior. A detailed study on the grain and grain boundary charge transport was carried out. The charge carrier transport in CdS nanostructures was identified to be hopping of polarons. From the combined analysis of the variation of imaginary part of electric modulus and complex impedance with frequency, it was found that at high temperatures localized conduction is dominant in CdS nanoparticles where as the long range hopping process is dominant with nanowires. It was also found that the scaling behavior of CdS nanoparticles varied considerably from that reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Joshy J, AbdulKhadar M (2001) Mater Sci Eng A 304–306:810

    Google Scholar 

  2. Cassina V, Gerosa L, Podestà A, Ferrari G, Sampietro M, Fiorentini F, Mazza T, Lenardi C, Milani P (2009) Phys Rev B 79:115422

    Article  Google Scholar 

  3. Biju V, Khadar MA (2003) J Mater Sci 38:4055. doi:https://doi.org/10.1023/A:1026131103898

    Article  CAS  Google Scholar 

  4. Wang C, Ao Y, Wang P, Hou J, Qian J, Zhang S (2010) Mater Lett 64:439

    Article  CAS  Google Scholar 

  5. Chrysochoos J (1992) J Phys Chem 96:2868

    Article  CAS  Google Scholar 

  6. Hodes G, Albu-Yaron A (1988) Proc Electrochem Soc 88–14:298

    Google Scholar 

  7. Jun Z, Xiao-wei D, Zhi-Iiang L, Xu G, Xing-pi Z (2007) Trans Nonferrous Met Soc China 17:1367

    Article  Google Scholar 

  8. Abulkhadar M, Thomas B (1995) Phys Stat Sol A 150:755

    Article  Google Scholar 

  9. Tripathi R, Kumar A, Sinha TP (2009) Pramana J Phys 72:969

    Article  CAS  Google Scholar 

  10. Mukherjee S, Sudarsan V, Vatsa RK, Godbole SV, Kadam RM, Bhatta UM, Tyagi AK (2008) Nanotechnology 19:325704

    Article  CAS  Google Scholar 

  11. Cole KS, Cole RH (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  12. Macedo PB, Moynihan T, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  13. Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Angelo PC (2007) J Mater Sci 42:5470. doi:https://doi.org/10.1007/s10853-006-0983-x

    Article  CAS  Google Scholar 

  14. Sural M, Ghosh A (1998) J Phys Condens Matter 10:10577

    Article  CAS  Google Scholar 

  15. Dutta A, Sinha TP (2007) Phys Rev B 76:155113

    Article  Google Scholar 

  16. Veena Gopalan E, Malini KA, Sakthi Kumar D, Yoshida Y, Al-Omari IA, Saravanan S, Anantharaman MR (2009) J Phy Condens Matter 21:146006

    Article  CAS  Google Scholar 

  17. Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69:185

    Article  CAS  Google Scholar 

  18. Terwilliger CD, Chiang YM (1995) Acta Mater 43:319

    Article  CAS  Google Scholar 

  19. Raymond O, Font R, Suárez-Almodover N, Portelles J, Siqueiros JM (2005) J App Phys 97:84108

    Article  Google Scholar 

  20. Pradhan DK, Choudhary RNP, Rinaldi C, Katiyar RS (2009) J Appl Phys 106:24102

    Article  Google Scholar 

  21. Baskaran N (2002) J Appl Phys 92:825

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Kerala State Council for Science Technology and Environment (KSCSTE) (No. (T) 012/SRS/2008/CSTE) for the financial support. The first author would like to thank STIC (Cochin) and the Common Instrumentation Facility, SB College for the analyses carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandran, A., Samuel, M.S., Koshy, J. et al. Dielectric relaxation behavior of CdS nanoparticles and nanowires. J Mater Sci 46, 4646–4653 (2011). https://doi.org/10.1007/s10853-011-5368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5368-0

Keywords

Navigation