Skip to main content
Log in

Controllable synthesis of hexagonal close-packed nickel nanoparticles under high nickel concentration and its catalytic properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hexagonal close-packed (hcp) Ni nanoparticles have been synthesized successfully in triethylene glycol with high ionic Ni concentration under the presence of protective agent (PVP or PEG). The protective agent (PVP or PEG) played an important role in the formation of hcp Ni. The crystal structure of nickel can be tuned by changing the concentration of Ni ions, reaction temperature, and amount of protectors. The X-ray diffraction and magnetic studies revealed the formation of pure hcp Ni. The VSM study showed that the magnetic properties of hcp Ni is quite different from that of face-centered cubic (fcc) Ni. The hcp Ni nanoparticle had a low saturation magnetization, while the coercivity value of hcp Ni was nearly the same as that of fcc Ni. A stable hcp Ni supported on γ-Al2O3 catalyst was also prepared successfully for the first time and its catalytic activity was investigated in the aqueous-phase reforming of glycerol. The achieved conversion of glycerol and selectivity to hydrogen was high up to 52 and 64%, while the selectivity to methane was only 5%, indicating the preventing of methanation on hcp Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075

    Article  CAS  Google Scholar 

  2. Zhu LJ, Guo PJ, Chu XW, Yan SR, Qiao MH, Fan KN, Zhang XX, Zong BN (2008) Green Chem 10:1323

    Article  CAS  Google Scholar 

  3. Wu ZJ, Zhang MH, Zhao ZF, Li W, Tao KY (2008) J Catal 256:323

    Article  CAS  Google Scholar 

  4. Li HX, Zhao QF, Wan Y, Dai WL, Qiao MH (2006) J Catal 244:251

    Article  CAS  Google Scholar 

  5. Jung SW, Park WI, Yi GC, Kim M (2003) Adv Mater 15:1358

    Article  CAS  Google Scholar 

  6. Wang SF, Xie F, Hu RF (2007) Sensor Actuator B Chem 123:495

    Article  CAS  Google Scholar 

  7. Zhang RY, Wang XM, Wu CH, Song M, Li JY, Lv G, Zhou J, Chen C, Dai YY, Gao F, Fu DG, Li XO, Guan ZQ, Chen BA (2006) Nanotechnology 17:3622

    Article  CAS  Google Scholar 

  8. Hou Y, Gao S (2003) J Mater Chem 13:1510

    Article  CAS  Google Scholar 

  9. Wu SH, Chen DH (2003) J Colloid Interface Sci 259:282

    Article  CAS  Google Scholar 

  10. Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T (2005) Adv Mater 17:429

    Article  CAS  Google Scholar 

  11. Cordente N, Respaud M, Senocq F, Casanove MJ, Amiens C, Chaudret B (2001) Nano Lett 1:565

    Article  CAS  Google Scholar 

  12. Zharkov SM, Zhigalov VS, Frolov GI (1996) Phys Met Metallogr 81:328

    Google Scholar 

  13. Tuaillon J, Dupuis V, Melinin P, Prevel B, Treilleux M, Perez A, Pellarin M, Vialle JL, Royer M (1997) Philos Mag A 76:493

    Article  CAS  Google Scholar 

  14. Hinotsu T, Jeyadevan B, Chinnasamy CN, Shinoda K, Tohji K (2004) J Appl Phys 5:7477

    Article  Google Scholar 

  15. Chinnasamy CN, Jeyadevan B, Shinoda K, Tohji K, Narayanasamy A, Sato K, Hisano S (2005) J Appl Phys 97:10J309

    Article  Google Scholar 

  16. Mi YZ, Yuan DS, Liu YL, Zhang JX, Xiao Y (2005) Mater Chem Phys 89:359

    Article  CAS  Google Scholar 

  17. Tzitzios V, Basina G, Gjoka M, Alexandrakis V, Georgakilas V, Niarchos D, Boukos N, Petridis D (2006) Nanotechnology 17:3750

    Article  CAS  Google Scholar 

  18. Jeon YT, Moon JY, Lee GH, Park J, Chang Y (2006) J Phys Chem B 110:1187

    Article  CAS  Google Scholar 

  19. Han M, Liu Q, He JH, Song Y, Xu Z, Zhu JM (2007) Adv Mater 19:1096

    Article  CAS  Google Scholar 

  20. Mireille RP, Murielle G, Serge V, Cédric L, Claude E, Mohamedally K (2007) Chem Mater 19:865

    Article  Google Scholar 

  21. Gong J, Wang LL, Liu Y, Yang JH, Zong ZG (2008) J Alloy Compd 457:6

    Article  CAS  Google Scholar 

  22. Yang JH, Feng B, Liu Y, Zhang YJ, Yang LL, Wang YX, Wei MB, Lang JH, Wang DD (2009) J Alloy Compd 467:L21

    Article  CAS  Google Scholar 

  23. Luo XH, Chen YZ, Yue GH, Peng DL, Luo XT (2009) J Alloy Compd 476:864

    Article  CAS  Google Scholar 

  24. Mourdikoudis S, Simeonidis D, Vilalta-Clemente A, Tuna F, Tsiaoussis I, Angelakeris M, Dendrinou-Samara C, Kalogirou O (2009) J Magn Magn Mater 321:2723

    Article  CAS  Google Scholar 

  25. Toshima N, Yan H, Shiraishi Y (2008) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Amsterdam

    Google Scholar 

  26. Gong J, Liu Y, Wang LL, Yang JH, Zong ZG (2008) Front Chem China 3:157

    Article  Google Scholar 

  27. Vergara J, Madurga V (2002) J Mater Res 17:2099

    Article  CAS  Google Scholar 

  28. Syukri BT, Ohya Y, Takahashi Y (2003) Mater Chem Phys 78:645

    Article  CAS  Google Scholar 

  29. He X, Kong LT, Liu BX (2005) J Appl Phys 97:106107

    Article  Google Scholar 

  30. Tian F, Zhu J, Wei D (2007) J Phys Chem C 111:6994

    Article  CAS  Google Scholar 

  31. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:64

    Article  Google Scholar 

  32. Davda RR, Dumesic JA (2003) Angew Chem Int Ed 42:4068

    Article  CAS  Google Scholar 

  33. Davda RR, Dumesic JA (2004) Chem Commun 1:36

    Article  Google Scholar 

  34. Iriondo A, Barrio VL, Cambra JF, Arias PL, Güemez MB, Navarro RM, Sánchez-Sánchez MC, Fierro JLG (2008) Top Catal 49:46

    Article  CAS  Google Scholar 

  35. Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported financially by the 973 Program of China (2010CB732300), the National Natural Science Foundation of China (No. 20973058), the Commission of Science and Technology of Shanghai Municipality (10XD1401400), and the “Excellent scholarship” of East China University of Science and Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqin Wang or Guanzhong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Azmat, M.U., Liu, X. et al. Controllable synthesis of hexagonal close-packed nickel nanoparticles under high nickel concentration and its catalytic properties. J Mater Sci 46, 4606–4613 (2011). https://doi.org/10.1007/s10853-011-5360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5360-8

Keywords

Navigation