Skip to main content

Advertisement

Log in

Phase transition and mechanical properties of constraint-aged Ni–Mn–Ga–Ti magnetic shape memory alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ni–Mn–Ga Heusler-type ferromagnetic shape memory alloys are attractive materials for micro-actuator, but the relatively poor ductility and low strength of Ni–Mn–Ga alloys have triggered a great deal of interest. In this study, we attempt to introduce some ductile second phase in the alloy by partially substituting Ti for Ga and constraint aging treatment. The results show that the martensitic transformation temperature first decreases and then increases slightly with the increasing of constraint-aging temperature, which can be attributed to the decrease of Ni content in the matrix and strengthening effect of the second particles. It is found that the amount of the Ni-rich precipitates by constraint-aged samples is more and the size of the second phase particle is smaller than that of the free-aged samples. The compressive stress and ductility can be significantly improved by the constraint-aging treatment, and the maximum compressive stress for constraint-aging alloy is about 1400 MPa, which is the highest value up to date compared with the 400 MPa in solution-treated Ni–Mn–Ga–Ti alloy and about 900 MPa in Ni–Mn–Ga–Ti alloy free-aged at 1073 K for 3 h. Scanning electron microscopy observations of fracture surfaces confirm that the Ni-rich second phase play a key role in improving the compression stress and ductility of Ni–Mn–Ga–Ti alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ullakko K, Huang JK, Kanter C, Kokorin VV, O’Handley RC (1996) Appl Phys Lett 69:1966

    Article  CAS  Google Scholar 

  2. Wuttig M, Liu L, Tsuchiya K, James RD (2000) J Appl Phys 87(9):4707

    Article  CAS  Google Scholar 

  3. O’Handley RC, Murray SJ, Marioni M, Nembach H, Allen SM (1998) J Appl Phys 83(6):3263

    Article  Google Scholar 

  4. Mullner P, Chernenko VA, Kostorz G (2004) J Appl Phys 95:1531

    Article  CAS  Google Scholar 

  5. Hosoda H, Wakashima K, Sugimoto T, Miyazaki S (2002) Mater Trans 43:852

    Article  CAS  Google Scholar 

  6. Murray SJ, Marioni M, Allen SM, O’Handley RC, Lograsso TA (2000) Appl Phys Lett 77:886

    Article  CAS  Google Scholar 

  7. Sozinov A, Likhachev AA, Ullakko K (2002) IEEE Trans Magn 38:2814

    Article  CAS  Google Scholar 

  8. Gao L, Cai W, Liu AL, Zhao LC (2006) J Alloy Compd 425:314

    Article  CAS  Google Scholar 

  9. Tsuchiya K, Tsutsumi A, Ohtsuka H, Umemoto M (2004) Mater Sci Eng A 378:370

    Article  Google Scholar 

  10. Nakanishi N, Mori T, Miura S, Murakami Y, Kachi S (1973) Philos Mag 28:277

    Article  CAS  Google Scholar 

  11. Khan M, Dubenko I, Stadler S, ALi N (2004) J Phys Condens Matter 16:5259

    Article  CAS  Google Scholar 

  12. Stadle S, Khan M, Mitchell J, Ali N, Gomes AM, Dubenko I, Takeuchi AY, Guimaraes AP (2006) Appl Phys Lett 88:192511

    Article  Google Scholar 

  13. Wang HB, Chen F, Gao ZY, Cai W, Zhao LC (2006) Mater Sci Eng A 438–440:990

    Article  Google Scholar 

  14. Cong DY, Wang S, Wang YD, Ren Y, Zuo L, Esling C (2007) Mater Sci Eng A 473:213

    Article  Google Scholar 

  15. Glavatskyy I, Glavatska N, Dobrinsky A, Hoffmann J-U, Söderberg O, Hannula S-P (2007) Scripta Mater 56:565

    Article  CAS  Google Scholar 

  16. Khan M, Dubenko I, Stadler S, Ali N (2005) J Appl Phys 97:10M304-1

    Google Scholar 

  17. Dong GF, Cai W, Gao ZY, Sui JH (2008) Scripta Mater 58:647

    Article  CAS  Google Scholar 

  18. Dong GF, Tan CL, Gao ZY, Feng Y, Cai W, Sui JH (2008) Scripta Mater 59:268

    Article  CAS  Google Scholar 

  19. Gao ZY, Dong GF, Cai W, Sui JH, Feng Y, Li XH (2009) J Alloy Compd 481:44

    Article  CAS  Google Scholar 

  20. Dong GF, Gao ZY, Tan CL, Cai W, Sui JH (2010) J Mater Sci 45:5490. doi:https://doi.org/10.1007/s10853-010-4606-1

    Article  CAS  Google Scholar 

  21. Scanchez-Alarcos V, Perez-Landazabal JI, Recarte V, Gomez-polo C, Rodriguez-Velamazan JA (2008) Acta Mater 56:5370

    Article  Google Scholar 

  22. Chen XQ, Lu X, Wang DY, Qin ZX (2008) Smart Mater Struct 17:065030

    Article  Google Scholar 

  23. Cong DY, Wang S, Wang YD, Ren Y, Zuo L, Esling C (2008) Mater Sci Eng A 473:213

    Article  Google Scholar 

  24. Hae-Min Lee, Anthony JK, Rotermund F et al (2009) J Mater Sci 44:3731. doi:https://doi.org/10.1007/s10853-009-3498-4

    Article  Google Scholar 

  25. Coughlin JP, Williams JJ, Chawla N (2009) J Mater Sci 44:700. doi:https://doi.org/10.1007/s10853-008-3188-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by Postdoctoral Science Foundation of China (Grant No. 20100481218) and Natural Science Foundation of China (Grant Nos. 50601006, 20973028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, G.F., Gao, Z.Y., Zhang, X.L. et al. Phase transition and mechanical properties of constraint-aged Ni–Mn–Ga–Ti magnetic shape memory alloy. J Mater Sci 46, 4562–4567 (2011). https://doi.org/10.1007/s10853-011-5354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5354-6

Keywords

Navigation