Skip to main content
Log in

Impurity and vacancy segregation at symmetric tilt grain boundaries in Y2O3-doped ZrO2

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Segregation energies of impurity ions and oxygen vacancies at grain boundaries in Y2O3-doped ZrO2 as calculated from atomistic simulations using energy minimization and Monte Carlo methods are reported. Based on these energies, local defect equilibrium concentrations have been estimated. It is found that it is more energetically favorable for an yttrium ion to be accompanied by an oxygen vacancy at grain boundaries, although decrease in energy when associated with an oxygen vacancy differs from boundary to boundary. The segregation energy for a neutral defect complex consisting of a two yttrium ions and an oxygen vacancy at infinitely dilute concentration is highly correlated with the coordination environment of each site in the vicinity of the grain boundary (GB), and, in turn, GB energy. Although the estimated local equilibrium concentrations of these defects are similar, detailed analysis of the atomic coordination and defect distributions in the vicinity of a GB reveal that defect distributions, especially of oxygen vacancies, are dependent on the characteristics of the particular GB and that segregation in effect reduces lattice strains at the GB. Equilibrium concentration distributions of yttrium at grain boundaries are also given as a function of spatial resolution, and are useful for interpretation of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hondros ED, Seah MP (1983) In: Cahn RW, Haasen P (eds) Physical metallurgy. Amsterdam, North-Holland

    Google Scholar 

  2. Hondros ED, Seah MP (1977) Metal Trans A 8:1363

    Article  Google Scholar 

  3. Hofmann S (1987) J Chim Phys Phys Chim Biol 84:141

    CAS  Google Scholar 

  4. Sutton AP, Balllufi RW (1995) Interfaces in crystalline materials. Oxford University Press, New York

    Google Scholar 

  5. Ikuhara Y, Thavorniti P, Sakuma T (1997) Acta Mater 45:5275

    Article  CAS  Google Scholar 

  6. Dickey EC, Fan X, Pennycook SJ (2001) J Am Ceram Soc 84:1361

    Article  CAS  Google Scholar 

  7. Shibata N, Morishige N, Yamamoto T, Ikuhara Y, Sakuma T (2002) Philos Mag Lett 82:175

    Article  CAS  Google Scholar 

  8. Shibata N, Yamamoto T, Ikuhara Y, Sakuma T (2001) J Electron Microsc 50:429

    Article  CAS  Google Scholar 

  9. Shibata N, Oba F, Yamamoto T, Ikuhara Y (2004) Philos Mag 84:2381

    Article  CAS  Google Scholar 

  10. Nohara Y, Tochigi E, Shibata N, Yamamoto T, Ikuhara Y (2010) J Electron Microsc 59:S117

    Article  CAS  Google Scholar 

  11. Backhaus-Ricoult M, Badding M, Thibault Y (2006) Ceram Trans 179:173

    CAS  Google Scholar 

  12. Hertz JL, Rothschild A, Tuller HL (2009) J Electroceram 22:428

    Article  CAS  Google Scholar 

  13. Fergus JW (2006) J Power Sources 162:30

    Article  CAS  Google Scholar 

  14. Ormerod RM (2003) Chem Soc Rev 32:17

    Article  CAS  Google Scholar 

  15. Fleming WJ (1977) J Electrochem Soc 124:21

    Article  CAS  Google Scholar 

  16. Verkerk MJ, Middlehuis BJ, Burggraaf AJ (1982) Solid State Ionics 6:159

    Article  CAS  Google Scholar 

  17. Fisher CAJ, Matsubara H (1999) J Eur Ceram Soc 19:703

    Article  CAS  Google Scholar 

  18. Cheikh A, Madani A, Touati A, Boussetta H, Monty C (2001) J Eur Ceram Soc 21:1837

    Article  CAS  Google Scholar 

  19. Chun SY, Mizutani N (2001) Appl Surf Sci 171:82

    Article  CAS  Google Scholar 

  20. Nakagawa T, Sakaguchi I, Shibata N, Matsunaga K, Yamamoto T, Haneda H, Ikuhara Y (2005) J Mater Sci 48:3185. doi:10.1007/s10853-005-2682-4

    Article  Google Scholar 

  21. Peters C, Weber A, Gerthsen D, Ivers-Tiffée E (2009) J Am Ceram Soc 92:2017

    Article  CAS  Google Scholar 

  22. Hughes AE, Sexton BA (1989) J Mater Sci 24:1057. doi:10.1007/BF01148798

    Article  CAS  Google Scholar 

  23. Nieh TG, Yaney DL, Wadsworth J (1989) Scripta Mater 23:2007

    Article  CAS  Google Scholar 

  24. Boulc’h F, Djurado E, Dessemond L (2004) J Electrochem Soc 151:A1210

    Article  Google Scholar 

  25. Oyama T, Yoshiya M, Matsubara H, Matsunaga K (2005) Phys Rev B 71:224105-1

    Google Scholar 

  26. Matsui K, Yoshida H, Ikuhara Y (2008) Acta Mater 56:1315

    Article  CAS  Google Scholar 

  27. Zapata-Solvas E, de Bernardi-Martín S, Gómez-García D (2010) Int J Mater Res 101:84

    CAS  Google Scholar 

  28. Chaim R, Brandon DG, Heuer AH (1986) Acta Metall 34:1933

    Article  CAS  Google Scholar 

  29. Whalen PJ, Reidinger F, Correale ST, Marti J (1987) J Mater Sci 22:4465. doi:10.1007/BF01132048

    Article  CAS  Google Scholar 

  30. Theunissen GSAM, Winnubst AJA, Burggraaf AJ (1989) J Mater Sci Lett 8:55

    Article  CAS  Google Scholar 

  31. Hughes AE, Badwal SPS (1990) Solid State Ionics 40(41):312

    Article  Google Scholar 

  32. Hughes AE, Badwal SPS (1991) Solid State Ionics 46:265

    Article  CAS  Google Scholar 

  33. Stanek CR, Grimes RW, Rushton MJD, McClellan KJ, Rawlings RD (2005) Philos Mag Lett 85:445

    Article  CAS  Google Scholar 

  34. Nowotny J, Sorrell CC, Bak T (2005) Surf Interface Anal 37:316

    Article  CAS  Google Scholar 

  35. Wang XG (2008) Surf Sci 602:L5

    Article  CAS  Google Scholar 

  36. Lahiri J, Mayernick A, Morrow SL, Koel BE, van Duin ACT, Janik MJ, Batzill M (2010) J Phys Chem C 114:5990

    Article  CAS  Google Scholar 

  37. Mayernick AD, Batzill M, van Duin ACT, Janik MJ (2010) Surf Sci 604:1438

    Article  CAS  Google Scholar 

  38. Lee HB, Prinz FB, Cai W (2010) Acta Mater 58:2197

    Article  CAS  Google Scholar 

  39. Guo X (1995) Solid State Ionics 81:235

    Article  CAS  Google Scholar 

  40. Guo X, Maier J (2001) J Electrochem Soc 148:E121

    Article  CAS  Google Scholar 

  41. Guo X, Zhang Z (2003) Acta Mater 51:2539

    Article  CAS  Google Scholar 

  42. Guo X, Ding Y (2004) J Electrochem Soc 151:J1

    Article  CAS  Google Scholar 

  43. De Souza RA, Pietrowski MJ, Anselmi-Tamburini U, Kim S, Munir ZA, Martin M (2008) Phys Chem Chem Phys 10:2067

    Article  Google Scholar 

  44. Durá OJ, López de la Torre MA, Vázquez L, Chaboy J, Boada R, Rivera-Calzada A, Santamaria J, Leon C (2010) Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects. Phys Rev B 81:184301-1-9

  45. Mondal P, Klein A, Jaegermann W, Hahn H (1999) Solid State Ionics 118:331

    Article  CAS  Google Scholar 

  46. Knöner G, Reimann K, Röwer R, Södervall U, Schaefer HE (2003) PNAS 100:3870

    Article  Google Scholar 

  47. Kosacki I, Rouleau CM, Becher PF, Bentley J, Lowmdes DH (2004) Electrochem Solid-State Lett 7:A459

    Article  CAS  Google Scholar 

  48. Kosacki I, Rouleau CM, Becher PF, Bentley J, Lowndes DH (2005) Solid State Ionics 176:1319

    Article  CAS  Google Scholar 

  49. Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Science 321:676

    Article  CAS  Google Scholar 

  50. Kushima A, Yildiz B (2010) J Mater Chem 20:4809

    Article  CAS  Google Scholar 

  51. Minervini L, Zacate MO, Grimes RW (1999) Solid State Ionics 116:339

    Article  CAS  Google Scholar 

  52. Minervini L, Grimes RW, Sickafus KE (2000) J Am Ceram Soc 83:1873

    Article  CAS  Google Scholar 

  53. Gale JD (1997) J Chem Soc Faraday Trans 93:629

    Article  CAS  Google Scholar 

  54. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087

    Article  CAS  Google Scholar 

  55. Yoshiya M, Yoshizu H (2010) Mater Trans 51:51

    Article  CAS  Google Scholar 

  56. Yoshiya M, Shimizu K, Oyama T, Yasuda H (in preparation)

  57. Oyama T, Wada N, Takagi H, Yoshiya M (2010) Phys Rev B 82:134107-1

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for useful discussions with Drs H. Matsubara and C. A. J. Fisher at the Japan Fine Ceramics Center and Prof. K. Matsunaga at Kyoto University. This study is in part supported by Grant-in-Aid for Scientific Research on Priority Areas “Atomic Scale Modification” (No. 474) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Yoshiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshiya, M., Oyama, T. Impurity and vacancy segregation at symmetric tilt grain boundaries in Y2O3-doped ZrO2 . J Mater Sci 46, 4176–4190 (2011). https://doi.org/10.1007/s10853-011-5352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5352-8

Keywords

Navigation