Skip to main content
Log in

Theoretical ELNES spectra of Si-K, Si-L, N-K, and O-K edges of an intergranular glassy film model in β-Si3N4

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A realistic atomic model of an intergranular glassy film (IGF) between the prismatic faces of crystalline β-Si3N4 has been used for ab initio exploration of variations in electron energy loss near edge structure (ELNES) spectral response from each of the component elements and available edges. The computed ELNES spectra within the IGF region show substantial variability that sometimes defy expectation. Upon careful analysis, we have devised guidelines for comparison and interpretation of the spectra in terms of the local coordination and bonding environment. The bond lengths, bond angles, coordination number, and elemental types of the bonded atoms cannot be relied upon to systematically explain the computed variations. It is anticipated that the rise of ELNES spectral measurements with enhanced spatial and energy resolution that are performed in conjunction with atomic scale imaging techniques will require new methods to interpret observed results. The intent of this work is to make progress and stimulate others in that direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References:

  1. Subramaniam A, Koch CT, Cannon RM, Rühle M (2006) Mater Sci Eng A 422:3

    Article  Google Scholar 

  2. Shibata N, Pennycook SJ, Gosnell TR, Painter GS, Shelton WA, Becher PF (2004) Nature (London, UK) 428:730

    Article  CAS  Google Scholar 

  3. Winkelman GB, Dwyer C, Marsh C, Hudson TS, Nguyen-Manh D, Döblinger M, Cockayne DJH (2006) Mater Sci Eng A 422:77

    Article  Google Scholar 

  4. Painter GS, Averill FW, Becher PF, Shibata N, van Benthem K, Pennycook SJ (2008) Phys Rev B 78:214206

    Article  Google Scholar 

  5. Ching W, Chen J, Rulis P, Ouyang L, Misra A (2006) J Mater Sci 41:5061. doi:10.1007/s10853-006-0446-4

    Article  CAS  Google Scholar 

  6. Yoshiya M, Adachi H, Tanaka I (1999) J Am Ceram Soc 82:3231

    Article  CAS  Google Scholar 

  7. Gu H, Cannon RM, Rühle M (1998) J Mater Res 13:376

    Article  CAS  Google Scholar 

  8. Kohno H, Mabuchi T, Takeda S, Kohyama M, Terauchi M, Tanaka M (1998) Phys Rev B 58:10338

    Article  CAS  Google Scholar 

  9. Gu H, Ceh M, Stemmer S, Müllejans H, Rühle M (1995) Ultramicroscopy 59:215

    Article  CAS  Google Scholar 

  10. Keast VJ, Scott AJ, Brydson R, Williams DB, Bruley J (2001) J Microsc (Oxford, UK) 203:135

    Article  CAS  Google Scholar 

  11. Kimoto K, Matsui Y, Nabatame T, Yasuda T, Mizoguchi T, Tanaka I, Toriumi A (2003) Appl Phys Lett 83:4306

    Article  CAS  Google Scholar 

  12. Mizoguchi T, Sasaki T, Tanaka S, Matsunaga K, Yamamoto T, Kohyama M, Ikuhara Y (2006) Phys Rev B 74:235408

    Article  Google Scholar 

  13. Tanaka I, Mizoguchi T, Matsui M, Yoshioka S, Adachi H, Yamamoto T, Okajima T, Umesaki M, Ching WY, Inoue Y, Mizuno M, Araki H, Shirai Y (2003) Nat Mater 2:541

    Article  CAS  Google Scholar 

  14. Tsukajima J, Arai K, Takatoh S, Enokijima T, Hayashi T, Yikegaki T, Kashiwagi A, Tokunaga K, Suzuki T, Fujikawa T, Usami S (1996) Thin Solid Films 281–282:318

    Article  Google Scholar 

  15. Skiff WM, Carpenter RW, Lin SH (1985) J Appl Phys 58:3463

    Article  CAS  Google Scholar 

  16. Muller DA, Tzou Y, Raj R, Silcox J (1993) Nature (London, UK) 366:725

    Article  CAS  Google Scholar 

  17. Ching W-Y, Mo S-D, Chen Y (2002) J Am Ceram Soc 85:11

    Article  CAS  Google Scholar 

  18. Ching WY, Rulis P (2008) Phys Rev B 77:035125/1

    CAS  Google Scholar 

  19. Ching WY, Rulis P (2008) Phys Rev B 77:125116/1

    CAS  Google Scholar 

  20. Muller DA, Kourkoutis LF, Murfitt M, Song JH, Hwang HY, Silcox J, Dellby N, Krivanek OL (2008) Science (Washington, DC, US) 319:1073

    Article  CAS  Google Scholar 

  21. Urban KW (2008) Science (Washington, DC, US) 321:506

    Article  CAS  Google Scholar 

  22. Bosman M, Keast VJ, Garcia-Munoz JL, D’Alfonso AJ, Findlay SD, Allen LJ (2007) Phys Rev Lett 99:106102/1

    Article  Google Scholar 

  23. Allen LJ, Findlay SD, Lupini AR, Oxley MP, Pennycook SJ (2003) Phys Rev Lett 91:105503/1

    Article  CAS  Google Scholar 

  24. Oxley MP, Cosgriff EC, Allen LJ (2005) Phys Rev Lett 94:203906/1

    Article  CAS  Google Scholar 

  25. Rulis P, Lupini AR, Pennycook SJ, Ching WY (2009) Ultramicroscopy 109:1472

    Article  CAS  Google Scholar 

  26. Yoshiya M, Tatsumi K, Tanaka I (2002) J Am Ceram Soc 85:109

    Article  CAS  Google Scholar 

  27. Levien L, Prewitt CT, Weidner DJ (1980) Am Miner 65:920

    CAS  Google Scholar 

  28. Grun R (1979) Acta Crystallogr B 35:800

    Article  Google Scholar 

  29. Sjoberg J, Helgesson G, Idrestedt I (1991) Acta Crystallogr C 47:2438

    Article  Google Scholar 

  30. Ching WY (1990) J Am Ceram Soc 73:3135

    Article  CAS  Google Scholar 

  31. Ching W-Y, Rulis P (2009) J Phys 21:104202/1

    CAS  Google Scholar 

  32. Rulis P, Ching WY, Kohyama M (2004) Acta Mater 52:3009

    Article  CAS  Google Scholar 

  33. Mizoguchi T, Varela M, Buban JP, Yamamoto T, Ikuhara Y (2008) Phys Rev B 77:024504

    Article  Google Scholar 

  34. Rulis P, Wang L, Ching WY (2009) Phys Stat Sol (RRL) 3:133

    Article  CAS  Google Scholar 

  35. Chen Y, Mo S-D, Kohyama M, Kohno H, Takeda S, Ching W-Y (2002) Mater Trans 43:1430

    Article  CAS  Google Scholar 

  36. Ching WY, Rulis P, Ouyang L, Misra A (2009) Appl Phys Lett 94:051907

    Article  Google Scholar 

  37. Ching WY, Rulis P, Ouyang L, Aryal S, Misra A (2010) Phys Rev B 81:214120

    Article  Google Scholar 

  38. Garofalini S, Zhang S (2006) J Mater Sci 41:5053. doi:10.1007/s10853-006-0448-2

    Article  CAS  Google Scholar 

  39. Shirtliff VJ, Hench LL (2003) J Mater Sci 38:4697. doi:10.1023/A:1027414700111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Grant no. DE-FG02-84DR45170. This research used the resources of NERSC supported by the Office of Science of DOE under Contract no. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rulis, P., Ching, W.Y. Theoretical ELNES spectra of Si-K, Si-L, N-K, and O-K edges of an intergranular glassy film model in β-Si3N4 . J Mater Sci 46, 4191–4198 (2011). https://doi.org/10.1007/s10853-011-5351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5351-9

Keywords

Navigation