Skip to main content
Log in

Fracture features in soda-lime glass after testing with a spherical indenter

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A thick soda-lime glass plate was indented with a spherical indenter at high indentation forces up to 1.839 kN. A systematisation of the fracture figures showed a basic structure, consisting of four individual zones. The detailed characteristics of these zones depended on indentation force. Existing models for the assessment of contact diameter and radial and lateral vent cracks length were proven. The appearance of fracture lances was observed and discussed. It was found that these lances formed during the intersection of conchoidal (lateral) fractures, and that their formation was bound to the elastic-plastic period of the indentation process. Features of fracture lances, namely the formation of numerous symmetric lance fronts, periodically occurring lance fronts, lance front statistics, and lance dimensions were described and discussed in detail. It was also shown that the formation of fracture lances showed elements of self-similarity and fractal geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Buehler MJ, Xu Z (2010) Nature 464(4):42

    Article  CAS  Google Scholar 

  2. Auerbach F (1891) Ann Phys Chem XLIII:61

    Article  Google Scholar 

  3. Peter K (1964) Glastechn Ber 37(7):333

    CAS  Google Scholar 

  4. Swain MV, Hagan JT (1976) J Phys D 9:2201

    Article  CAS  Google Scholar 

  5. Persson J, Breder K, Rowcloffe DJ (1993) J Mater Sci 28:6484. doi:https://doi.org/10.1007/BF01352218

    Article  CAS  Google Scholar 

  6. Salman AD, Gorham DA (1997) J Mater Sci Lett 16:1099

    Article  CAS  Google Scholar 

  7. Gorham DA, Salman AD (1999) Wear 233–235:151

    Article  Google Scholar 

  8. Gorham DA, Salman AD, Tan H (2002) Philos Mag A 82(10):2231

    Article  CAS  Google Scholar 

  9. Quinn GD (2007) Fractography of ceramics and glasses. NIST Special Publication 960-16. NIST, Gaithersburg, MD

  10. Smekal AG (1937) Glastechn Ber 15(7):259

    Google Scholar 

  11. Hull D (1996) J Mater Sci Lett 15:651

    Article  CAS  Google Scholar 

  12. Kirchner HP, Gruver RM (1977) In: Taplin DM (ed) Proceedings of 4th international conference on fracture, vol 3. Pergamon Press, New York, pp 959–965

  13. Marshall DB, Lawn BR, Mecholsky JJ (1980) J Am Ceram Soc 63(5–6):358

    Article  Google Scholar 

  14. Hockey BJ, Lawn BR (1975) J Mater Sci 10:1275. doi:https://doi.org/10.1007/BF00540816

    Article  CAS  Google Scholar 

  15. Tandon R, Buchheit TE (2007) J Am Ceram Soc 90(2):502

    Article  CAS  Google Scholar 

  16. Murgatroyd JB (1942) J Soc Glass Technol 26:155

    CAS  Google Scholar 

  17. Smekal AG (1953) Österr Ingenieur Archiv VII:49

    Google Scholar 

  18. Kienle R (1960) Glastechn Ber 33(9):321

    Google Scholar 

  19. Sommer E (1969) Eng Fract Mech 1:539

    Article  Google Scholar 

  20. Yoda M (1990) J Am Ceram Soc 73(7):2124

    Article  CAS  Google Scholar 

  21. Espinosa HC, Xu Y (1997) J Am Ceram Soc 80(8):2061

    Article  CAS  Google Scholar 

  22. Chai H, Ravichandran G (2009) Int J Impact Eng 36(3):375

    Article  Google Scholar 

  23. Kulawansa DM, Jensen LC, Langford SC, Dickinson JT (1994) J Mater Res 9(2):476

    Article  CAS  Google Scholar 

  24. Kocanda S, Kuzmenko A, Pismennyi NN, Sadovskii Y (1986) Strength Mater 18(9):1160

    Article  Google Scholar 

  25. Frid V, Bahat D, Rabinovich A (2005) J Struct Geol 27:145

    Article  Google Scholar 

  26. Wiederhorn SM, Hockey BJ (1983) J Mater Sci 18:766. doi:https://doi.org/10.1007/BF00745575

    Article  CAS  Google Scholar 

  27. Wereszczak AA, Johanns KE, Kirkland TP, Anderson CE, Behner T, Patel P, Tempelton DW (2006) Report ADM002075. Oak Ridge National Laboratory, Oak Ridge, TN, 01 November 2006

  28. Maekawa I, Shin H, Miyata H (1991) Eng Fract Mech 40(4):869

    Google Scholar 

  29. Satapathy S (2001) Int J Solids Struct 38:5833

    Article  Google Scholar 

  30. Kirchner HP, Ragosta JA (1983) J Am Ceram Soc 66(4):293

    Article  Google Scholar 

  31. Kuo SQ, Liu HY, Lindqvist PA, Tang CA (2004) In: Proceedings of Sinorock Symposium, Three Gorges Dam Site, China, 18–21 May, 2004

  32. Hull D (1995) Int J Fract 70:59

    Article  Google Scholar 

  33. Djordjevic ZV, Li X, Shin WS, Wunder SL, Baran GR (1995) J Mater Sci 30:2968. doi:https://doi.org/10.1007/BF00349671

    Article  CAS  Google Scholar 

  34. Kerkhof F (1970) Bruchvorgänge in Gläsern. Verlag der deutschen Glastechnischen Gesellschaft, Frankfurt am Main

    Google Scholar 

  35. Pons AJ, Karma A (2010) Nature 464(4):85

    Article  CAS  Google Scholar 

  36. Arora A, Marshall DB, Lawn BR (1979) J Non-Cryst Sol 31:415

    Article  CAS  Google Scholar 

  37. Peter K (1970) J Non-Cryst Sol 5:103

    Article  CAS  Google Scholar 

  38. Fischer-Cripps AC (2007) Introduction to contact mechanics, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  39. Kim DK, Jung YG, Peterson IM, Lawn BR (1999) Acta Mater 47(18):4711

    Article  CAS  Google Scholar 

  40. Rhee YW, Kim HW, Deng Y, Lawn BR (2001) J Am Ceram Soc 84(3):561

    Article  CAS  Google Scholar 

  41. Bushby AJ, Swain MV (1995) In: Bradt RC et al (eds) Plastic deformation of ceramics. Plenum Press, New York, pp 161–172

    Chapter  Google Scholar 

  42. Marshall DB, Lawn BR, Evans AG (1982) J Am Ceram Soc 65(11):561

    Article  CAS  Google Scholar 

  43. Chen X, Hutchinson JW, Evans AG (2005) J Am Ceram Soc 88(5):1233

    Article  CAS  Google Scholar 

  44. Lawn BR (1998) J Am Ceram Soc 81(8):1977

    Article  CAS  Google Scholar 

  45. Lin B, Maer ME, Ravi-Chandar K (2010) Int J Fract 165(2):175

    Article  Google Scholar 

  46. Kerkhoff F (1975) Glastechn Ber 48(6):112

    Google Scholar 

  47. Swain MV, Lawn BR, Burns SJ (1974) J Mater Sci 9:175. doi:https://doi.org/10.1007/BF00550939

    Article  CAS  Google Scholar 

  48. Gardon R (1978) J Am Ceram Soc 61(3):143

    Article  CAS  Google Scholar 

  49. Ji H, Keryvin V, Rouxel T, Hammouda T (2006) Scripta Mater 55:1159

    Article  CAS  Google Scholar 

  50. Russ JC (1994) Fractal surfaces. Plenum Press, New York

    Book  Google Scholar 

  51. Mandelbrot B (1987) Die fraktale Geometrie der Natur. Birkhäuser Verlag, Basel

    Book  Google Scholar 

Download references

Acknowledgement

This investigation was supported by the German Research Association (DFG), Bonn, Germany. The working group “Endogene Dynamik” of the Faculty Georesources and Materials Technology at the RWTH Aachen has kindly permitted the use of its high-performance optical microscopes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Momber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momber, A. Fracture features in soda-lime glass after testing with a spherical indenter. J Mater Sci 46, 4494–4508 (2011). https://doi.org/10.1007/s10853-011-5343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5343-9

Keywords

Navigation