Skip to main content
Log in

Effects of γ-ray irradiation and thermal annealing on structural, optical and electrical properties of vacuum deposited vanadyl 2,3-naphthalocyanine thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vacuum deposited vanadyl naphthalocyanine (VONc) crystalline thin films were produced. The films showed a completely different structural and growth pattern on thermal annealing and γ-ray irradiation. The XRD spectra revealed polycrystalline nature for both annealed and γ-ray irradiated films. Raman spectra observes that the γ-irradiated films had a higher disorder producing broad and diffuse peaks in comparison to its annealed samples. In the absorption spectra, the γ-irradiated films shows a broad Q-band with a shift of 50 nm towards the IR region enabling VONc to be used in a lot of applications using the commercially available semiconductor NIR lasers. Films on 97.9 krad γ-ray irradiation showed some interesting properties with a better conductivity compared to either it’s higher γ-ray irradiated counterpart (195.8 krad) or the annealed films. Also the activation energy values, which is the minimum amount of energy required to liberate charge carriers from traps or to ionize levels within the band gap, was found to be lowered to half of its value for the films irradiated at 97.9 krad promising its performance in optical data recording, photo-sensitizer in photodynamic therapy, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arshak A, Zleetni S, Arshak K (2002) Sensors 2:174

    Article  CAS  Google Scholar 

  2. Tomiyama T, Watanabe I, Kuwano A, Habiro M, Takane N, Yamada M (1995) Appl Opt 34:8201

    Article  CAS  Google Scholar 

  3. Kivits P, de Bont R, van der Veen J (1981) Appl Phys A 26:101

    Article  Google Scholar 

  4. Silva EAB, Borin JF, Nicolucci P, Graeff CFO, Ghilardi NT, Bianchi RF (2005) Appl Phys Lett 86:131902

    Article  Google Scholar 

  5. Wöhrle D, Meissner D (1991) Adv Mater 3:129

    Article  Google Scholar 

  6. Liljeroth P, Repp J, Meyer G (2007) Science 317:1203

    Article  CAS  Google Scholar 

  7. Ueno M, Yuasa T (1990) Infrared absorbing dyes. Plenum Press, New York

    Google Scholar 

  8. Gaffo L, Cordeiro MR, Freitas AR, Moreira WC, Girotto EM, Zucolotto V (2010) J Mater Sci 45:1366. doi:https://doi.org/10.1007/s10853-009-4094-3

    Article  CAS  Google Scholar 

  9. Yaghmour SJ (2009) J Alloys Compd 486:284

    Article  CAS  Google Scholar 

  10. El-Batal FH (2008) J Mater Sci 43:1070. doi:https://doi.org/10.1007/s10853-007-2254-x

    Article  CAS  Google Scholar 

  11. Maissel LI, Glang R (1985) Handbook of thin film technology. McGraw Hill, New York

    Google Scholar 

  12. Yanagi H, Ashida M, Elbe J, Wohrle D (1990) J Phys Chem 94:7056

    Article  CAS  Google Scholar 

  13. Tai S, Hayashi N (1991) J Chem Soc Perkins Trans 2:1275

    Article  Google Scholar 

  14. Manivannan A, Nagahara LA, Hashimoto K, Fujishima A, Yanagi H, Kouzeki T, Ashida M (1993) Langmuir 9:771

    Article  CAS  Google Scholar 

  15. Jiang J, Arnold DP, Yu H (2000) Polyhedron 19:1381

    Article  CAS  Google Scholar 

  16. Carrasco EAF, Campos-Vallette M, Saavedra MS, Diaz GF, Clavijo RE, Garcia-Ramos JV, Sanchez-Cortes S (2001) Vib Spectrosc 26:201

    Article  Google Scholar 

  17. Kadish KM, Smith KM, Guilard R (2003) The porphyrin handbook: vol 16 phthalocyanines: spectroscopic and electrochemical characterization. Academic Press, California

    Google Scholar 

  18. El-Nahassa MM, Abd-El-Rahmana KF, Al-Ghamdib AA, Asiri AM (2004) Physica B 344:398

    Article  Google Scholar 

  19. Tai S, Hayashi N (1991) J Chem Soc Perkin Trans 2:1275

    Article  Google Scholar 

  20. Day P (2010) Physica B 405:S6

    Article  CAS  Google Scholar 

  21. Minh LQ, Chot T, Dinh NN, Xuan NN, Bingh NT, Phuoc DM (1987) Phys Stat Solidi A 101:K143

    Article  CAS  Google Scholar 

  22. Chen Y, Hanack M, Blau WJ, Dini D, Liu Y, Lin Y, Bai J (2006) J Mater Sci 41:2169. doi:https://doi.org/10.1007/s10853-006-5552-9

    Article  CAS  Google Scholar 

  23. Collins RA, Krier A, Abass AK (1993) Thin Solid Films 229:113

    Article  CAS  Google Scholar 

  24. Yakuphanoglu F, Arslan M, Küçükislamoğlu M, Zengin M (2005) Sol Energy 79:96

    Article  CAS  Google Scholar 

  25. Urbach F (1953) Phys Rev 92:1324

    Article  CAS  Google Scholar 

  26. Skettrup T (1978) Phys Rev B 18:2622

    Article  CAS  Google Scholar 

  27. Schön JH, Kloc Ch, Batlogg B (2001) Phys Rev Lett 86:3843

    Article  Google Scholar 

  28. Belghachi A, Collins RA (1988) J Phys D 21:1647

    Article  CAS  Google Scholar 

  29. Gould RD (1996) Coord Chem Rev 156:237

    Article  CAS  Google Scholar 

  30. Vidadi YA, Rozenshtein LD, Chistyakov EA (1969) Sov Phys Sol Stat 11:219

    CAS  Google Scholar 

  31. Anderson PW (1985) Phys Rev 109:1492

    Article  Google Scholar 

  32. Mott NF (1967) Adv Phys 16:49

    Article  CAS  Google Scholar 

  33. Cohen NH, Fritche H, Ovshinsky SR (1969) Phys Rev Lett 22:1065

    Article  CAS  Google Scholar 

  34. Mott NF, Davis EA (1970) Phil Mag 22:903

    Article  Google Scholar 

  35. Thomas J, Pillai VNS, Nampoori VPN, Vallabhan CPG (1999) J Mater Sci Lett 18:963

    Article  CAS  Google Scholar 

  36. El-Nahass MM, Farag AAM, Atta AA (2009) Synth Met 159:589

    Article  CAS  Google Scholar 

  37. Ahmed MA, Summan AM, Mousa MA (1992) J Mater Sci-Mater Electron 2:1

    Article  Google Scholar 

  38. Gaffar MA, Hussien AG (2001) J Phys Chem Solids 62:2011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Menon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panicker, N.S., Menon, C.S. Effects of γ-ray irradiation and thermal annealing on structural, optical and electrical properties of vacuum deposited vanadyl 2,3-naphthalocyanine thin films. J Mater Sci 46, 4479–4486 (2011). https://doi.org/10.1007/s10853-011-5341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5341-y

Keywords

Navigation