Skip to main content
Log in

First-principles calculation of grain boundary energy and grain boundary excess free volume in aluminum: role of grain boundary elastic energy

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We examined the grain boundary energy (GBE) and grain boundary excess free volume (BFV) by applying the first-principles calculation for six [110] symmetric tilt grain boundaries in aluminum to clarify the origin of GBE. The GBE increased linearly as BFV increased. The elastic energy associated with BFV, namely the grain boundary elastic energy, was estimated as a function of BFV and the shear modulus. The grain boundary elastic energies were close in value to the GBEs. The charge density distributions indicated that the bonding in the grain boundary region is significantly different from the bonding in the bulk. The grain boundary elastic energies were 15–32% higher than the GBEs. This overestimation of the grain boundary elastic energy is caused by the characteristics of the electronic bonding at the grain boundary, which is different from bonding in the bulk. We have concluded that GBE results mainly from the grain boundary elastic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Merkle KL, Csencsits R, Rynes KL, Withrow JP, Stadelmann PA (1998) J Microsc 190:204

    Article  Google Scholar 

  2. Shvindlerman LS, Gottstein G, Ivanov VA, Molodov DA, Kolesnikov D, Lojkowski W (2006) J Mater Sci 41:7725. doi:10.1007/s10853-006-0563-0

    Article  CAS  Google Scholar 

  3. Shen TD, Zhang J, Zhao Y (2008) Acta Mater 56:3663

    Article  CAS  Google Scholar 

  4. Wolf D (1989) Scr Metall 23:1913

    Article  CAS  Google Scholar 

  5. Wolf D (1990) Acta Metall Mater 38:781

    Article  CAS  Google Scholar 

  6. Huang YH, Zhang JM, Xu KW (2006) Appl Surf Sci 253:698

    Article  CAS  Google Scholar 

  7. Takata N, Ikeda KI, Yoshida F, Nakashima H, Abe H (2004) J Jpn Inst Met 68:240

    Article  CAS  Google Scholar 

  8. Rittner JD, Seidman DN (1996) Phys Rev B 54:6999

    Article  CAS  Google Scholar 

  9. Chandra N, Dang P (1999) J Mater Sci 34:655. doi:10.1023/A:1004531706998

    Article  CAS  Google Scholar 

  10. Rajgarhia RK, Saxena A, Spearot DE, Hartwig KT, More KL, Kenik EA, Meyer H (2010) J Mater Sci 45:6707. doi:10.1007/s10853-010-4764-1

    Article  CAS  Google Scholar 

  11. Jiang Y, Smith JR (2009) J Mater Sci 44:1734. doi:10.1007/s10853-008-3084-1

    Article  CAS  Google Scholar 

  12. Pilania G, Tan DQ, Cao Y, Venkataramani VS, Chen Q, Ramprasad R (2009) J Mater Sci 44:5249. doi:10.1007/s10853-009-3465-0

    Article  CAS  Google Scholar 

  13. Wright AF, Atlas SR (1994) Phys Rev B 50:15248

    Article  CAS  Google Scholar 

  14. Lu G, Kioussis N (2001) Phys Rev B 64:024101

    Article  Google Scholar 

  15. Wang RZ, Kohyama M, Tanaka S, Tamura T, Ishibashi S (2009) Mater Trans 50:11

    Article  CAS  Google Scholar 

  16. Inoue Y, Uesugi T, Takigawa Y, Higashi K (2007) Mater Sci Forum 561–565:1837

    Article  Google Scholar 

  17. Uesugi T, Tsuchiya K, Kohyama M, Higashi K (2004) Mater Sci Forum 447–448:27

    Article  Google Scholar 

  18. Ogata S, Kitagawa H, Maegawa Y, Saitoh K (1997) Comput Mater Sci 7:271

    Article  CAS  Google Scholar 

  19. Fuchs M, Da Silva JLF, Stampfl C, Neugebauer J, Scheffler M (2002) Phys Rev B 65:245212

    Article  Google Scholar 

  20. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717

    Article  CAS  Google Scholar 

  21. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  22. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  23. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  24. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  25. Fischer TH, Almlof J (1992) J Phys Chem 96:9768

    Article  CAS  Google Scholar 

  26. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  27. Chetty N, Weinert M, Rahman TS, Davenport JW (1995) Phys Rev B 52:6313

    Article  Google Scholar 

  28. Uesugi T, Kohyama M, Higashi K (2003) Phys Rev B 68:184103

    Article  Google Scholar 

  29. Hartford J, von Sydow B, Wahnstrom G, Lundqvist BI (1998) Phys Rev B 58:2487

    Article  CAS  Google Scholar 

  30. Otsuki A, Mizuno M (1986) Trans Jpn Inst Met Suppl 27:789

    Google Scholar 

  31. Carling K, Wahnstrom G, Mattsson TR, Mattsson AE, Sandberg N, Grimvall G (2000) Phys Rev Lett 85:3862

    Article  CAS  Google Scholar 

  32. Vitos L, Ruban AV, Skriver HL, Kollar J (1998) Surf Sci 411:186

    Article  CAS  Google Scholar 

  33. Eshelby JD (1954) J Appl Phys 25:255

    Article  CAS  Google Scholar 

  34. Friedel J (1954) Adv Phys 3:446

    Article  Google Scholar 

  35. King HW (1966) J Mater Sci 1:79. doi:10.1007/BF00549722

    Article  CAS  Google Scholar 

  36. Kittel C (1986) Introduction to solid state physics, 6th edn. Wiley, New York

    Google Scholar 

  37. Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, New York

    Google Scholar 

  38. Ehrhart P, Jung P, Schulta H, Ullmaier H (1990) In: Ullmaier H (ed) Atomic defects in metals, Landolt-Bornstein, new series, Group III, vol 25. Springer, Berlin, p 213

    Google Scholar 

  39. Feibelman PJ (1990) Phys Rev Lett 65:729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Yasuhiko Inoue and Mr. Yuuki Nishiie, who were students in the department, for their assistance with the computations. This study was partly supported by a Giant-in-Aid for scientific Research on the Priority Area “Giant Straining Process for Advanced Materials Containing Ultra-High Density Lattice Defects” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and by the Light Metal Educational Foundation Inc. The authors thank Dr. Masanori Kohyama for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokuteru Uesugi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uesugi, T., Higashi, K. First-principles calculation of grain boundary energy and grain boundary excess free volume in aluminum: role of grain boundary elastic energy. J Mater Sci 46, 4199–4205 (2011). https://doi.org/10.1007/s10853-011-5305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5305-2

Keywords

Navigation