Skip to main content
Log in

Synthesis of nanocomposites and amorphous alloys by mechanical alloying

  • Abbaschian Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanical alloying (MA) is a powder metallurgy processing technique that involves repeated cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. Due to the specific advantages offered by this technique, MA was used to synthesize a variety of advanced materials. This article presents two specific examples of synthesis of nanocomposites containing a high volume fraction of the reinforcement phase in Al and TiAl matrices. It was possible to uniformly disperse 50 vol% of nanometric (50 nm) Al2O3 in Al and achieve high strength and modulus of elasticity. Similarly, it was possible to disperse 60 vol% of Ti5Si3 phase in the γ-TiAl intermetallic. Fully consolidated material showed superplastic behavior at 950 °C and a strain rate of 4 × 10−5 s−1. Amorphous phases were produced by MA of blended elemental powder mixtures in several Fe-based compositions. From the systematic investigations carried out, it was possible to deduce the criteria for glass formation and understand the interesting phenomenon of mechanical crystallization. By conducting some controlled experiments, it was also possible to explain the mechanism of amorphization in these mechanically alloyed powder blends. Other examples of synthesis of advanced materials, e.g., photovoltaic materials and energetic materials, have also been briefly referred to. This article concludes with an indication of the topics that need special attention for further exploitation of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bloor D, Brook RJ, Flemings MC, Mahajan S (eds) (1994) The encyclopedia of advanced materials. Pergamon, Oxford, p xi

  2. Anantharaman TR, Suryanarayana C (1987) Rapidly solidified metals: a technological overview. Trans Tech Publications, Zurich, Switzerland

    Google Scholar 

  3. Liebermann HH (ed) (1993) Rapidly solidified alloys: processes, structures, properties, applications. Marcel Dekker, New York, NY

    Google Scholar 

  4. Suryanarayana C, Inoue A (2011) Bulk metallic glasses. CRC Press, Boca Raton, FL

    Google Scholar 

  5. Suryanarayana C, Jones H (1988) Int J Rapid Solidif 3:253

    CAS  Google Scholar 

  6. Trebin HR (ed) (2003) Quasicrystals: structure and physical properties. Wiley-VCH, Weinheim

    Google Scholar 

  7. Suryanarayana C (1995) Int Mater Rev 40:41

    CAS  Google Scholar 

  8. Gleiter H (2000) Acta Mater 48:1

    Article  CAS  Google Scholar 

  9. Suryanarayana C (2007) Adv Eng Mater 7:983

    Article  Google Scholar 

  10. Turnbull D (1981) Metall Trans A 12:695

    Article  CAS  Google Scholar 

  11. Suryanarayana C (ed) (1999) Non-equilibrium processing of materials. Pergamon, Oxford

    Google Scholar 

  12. Benjamin JS (1990) Metal Powder Report 45:122

    Article  Google Scholar 

  13. Suryanarayana C (2001) Prog Mater Sci 46:1

    Article  CAS  Google Scholar 

  14. Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New York, NY

    Book  Google Scholar 

  15. Takacs L (2002) Prog Mater Sci 47:355

    Article  CAS  Google Scholar 

  16. Suryanarayana C (1995) Bibliography on mechanical alloying and milling. Cambridge International Science Publishing, Cambridge, UK

    Google Scholar 

  17. Clyne TW, Withers PJ (1995) An introduction to metal matrix composites. Cambridge University Press, Cambridge, UK

    Google Scholar 

  18. Kim HM, Kim TS, Suryanarayana C, Chun BS (2000) Mater Sci Eng A 287:59

    Article  Google Scholar 

  19. Son HT, Kim TS, Suryanarayana C, Chun BS (2003) Mater Sci Eng A 348:163

    Article  Google Scholar 

  20. Hong SJ, Kim HM, Huh D, Suryanarayana C, Chun BS (2003) Mater Sci Eng A 347:198

    Article  Google Scholar 

  21. Prabhu B, Suryanarayana C, An L, Vaidyanathan R (2006) Mater Sci Eng A 425:192

    Article  Google Scholar 

  22. Klassen T, Bohn R, Suryanarayana C, Fanta G, Bormann R (2003) In: Shaw L, Suryanarayana C, Mishra RS (eds) Processing and properties of structural nanomaterials. TMS, Warrendale, PA, p 93

  23. Klassen T, Suryanarayana C, Bormann R (2008) Scripta Mater 59:455

    Article  CAS  Google Scholar 

  24. Suryanarayana C, Behn R, Klassen T, Bormann R (2010) (submitted)

  25. Mohan P, Suryanarayana C, Desai V (2004) In: Bandyopadhyay S et al (eds) Nanomaterials: synthesis, characterisation, and application. Tata McGraw-Hill Publ. Co. Ltd., New Delhi, India, p 171

  26. Suryanarayana C (2008) Mater Sci Eng A 479:23

    Article  Google Scholar 

  27. Al-Aqeeli N, Mendoza-Suarez G, Suryanarayana C, Drew RAL (2008) Mater Sci Eng A 480:392

    Article  Google Scholar 

  28. Wang Y, Suryanarayana C, An L (2005) J Am Ceram Soc 88:780

    Article  CAS  Google Scholar 

  29. Prabhu B (2005) MS Thesis, University of Central Florida, Orlando, USA

  30. Nguyen TT, Suryanarayana C, Vaidyanathan R (2010) Unpublished results, University of Central Florida, Orlando, FL, USA

  31. Froes FH, Suryanarayana C, Eliezer D (1992) J Mater Sci 27:5113. doi:10.1007/BF02403806

    Article  CAS  Google Scholar 

  32. Appel F, Wagner R (1998) Mater Sci Eng Reports R22:187

    Article  CAS  Google Scholar 

  33. Oehring M, Appel F, Pfullmann T, Bormann R (1995) Appl Phys Lett 66:941

    Article  CAS  Google Scholar 

  34. Bohn R, Klassen T, Bormann R (2001) Intermetallics 9:559

    Article  CAS  Google Scholar 

  35. Mishra RS, Lee WB, Mukherjee AK, Kim Y-W (1995) In: Kim Y-W, Wagner R, Yamaguchi M (eds) Gamma titanium aluminides. TMS, Warrendale, PA, p 571

  36. Suryanarayana C (1984) Bull Mater Sci India 6:579

    Article  CAS  Google Scholar 

  37. Luborsky FE (ed) (1983) Amorphous metallic alloys. Butterworths, London

    Google Scholar 

  38. Inoue A (2000) Acta Mater 48:279

    Article  CAS  Google Scholar 

  39. Suryanarayana C, Seki IR, Inoue A (2009) J Non-Cryst Solids 355:355

    Article  CAS  Google Scholar 

  40. Suryanarayana C, Norton MG (1998) X-ray diffraction: a practical approach. Plenum, New York, NY

    Google Scholar 

  41. Massalski TB (ed) (1986) Binary alloy phase diagrams. ASM International, Materials Park, OH

    Google Scholar 

  42. de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals. Transition metal alloys. North-Holland, Amsterdam

    Google Scholar 

  43. Sharma S, Vaidyanathan R, Suryanarayana C (2007) Appl Phys Lett 90:111915-1

    Google Scholar 

  44. Cho YS, Koch CC (1993) J Alloys Compd 194:287

    Article  CAS  Google Scholar 

  45. Froes FH, Suryanarayana C, Russell KC, Li CG (1995) Mater Sci Eng A 192/193:612

    Google Scholar 

  46. Klassen T, Oehring M, Bormann R (1997) Acta Mater 45:3935

    Article  CAS  Google Scholar 

  47. Stoloff NS, Davies RG (1968) Prog Mater Sci 13:1

    Article  Google Scholar 

  48. Turnbull D (1969) Contemp Phys 10:473

    Article  CAS  Google Scholar 

  49. Wong R, Merz MD (1976) Nature (London) 260:35

    Article  Google Scholar 

  50. Seelam UMR, Suryanarayana C (2006) Unpublished results, University of Central Florida, Orlando, FL

  51. Nose M, Masumoto T (1980) Sci Rep Res Inst Tohoku Univ A 28:135

    Google Scholar 

  52. Köster U, Herold U (1981) In: Güntherodt HJ, Beck H (eds) Glassy metals I. Springer-Verlag, Berlin, p 225

  53. Patil U, Hong SJ, Suryanarayana C (2005) J Alloys Compd 389:121

    Article  CAS  Google Scholar 

  54. Sharma S, Suryanarayana C (2007) J Appl Phys 102:083544-1

    Google Scholar 

  55. Sharma S, Suryanarayana C (2008) J Appl Phys 103:013504-1

    Google Scholar 

  56. Trudeau ML, Schulz R, Dussault D, Van Neste A (1990) Phys Rev Lett 64:99

    Article  CAS  Google Scholar 

  57. Suryanarayana C (1995) Intermetallics 3:153

    Article  CAS  Google Scholar 

  58. Blatter A, Von Allmen M (1985) Phys Rev Lett 54:2103

    Article  CAS  Google Scholar 

  59. Park ES, Kim DH (2006) Acta Mater 54:2597

    Article  CAS  Google Scholar 

  60. Ma E (2006) Prog Mater Sci 50:413

    Article  Google Scholar 

  61. Miedema AR, de Boer FR, Boom R (1997) CALPHAD 1:341

    Article  Google Scholar 

  62. Sharma S, Suryanarayana C (2008) Scripta Mater 58:508

    Article  CAS  Google Scholar 

  63. Egami T, Waseda Y (1984) J Non-Cryst Solids 64:113

    Article  CAS  Google Scholar 

  64. Yan ZJ, Li JF, He SR, Zhou YH (2003) Mater Res Bull 38:681

    Article  CAS  Google Scholar 

  65. Egami T (2003) J Non-Cryst Solids 317:30

    Article  CAS  Google Scholar 

  66. Miracle DB (2004) Nat Mater 3:697

    Article  CAS  Google Scholar 

  67. Miracle DB (2006) Acta Mater 54:4317

    Article  CAS  Google Scholar 

  68. Birkmire RW, Eser E (1997) Ann Rev Mater Sci 27:625

    Article  CAS  Google Scholar 

  69. Suryanarayana C, Ivanov E, Noufi R, Contreras MA, Moore JJ (1999) J Mater Res 14:377

    Article  CAS  Google Scholar 

  70. Ivanov E, Suryanarayana C (2008) In: 23rd European photovoltaic solar energy conference, September 1–5, 2008, Valencia, Spain, p 2513

  71. Suryanarayana C, Ivanov E, Noufi R, Contreras MA, Moore JJ (1998) Thin Solid Films 332:340

    Article  CAS  Google Scholar 

  72. Dreizin EL (2000) Prog Energ Combust Sci 26:57

    Article  CAS  Google Scholar 

  73. Chen RH, Suryanarayana C, Chaos M (2006) Adv Eng Mater 8:563

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study reported here is supported by the US National Science Foundation under grants DMR-0314212 and DMR-0334544 and by the Office of Naval Research. The authors also acknowledge fruitful collaboration and useful discussions with Drs. Raj Vaidyanathan, Linan An, and Ruey-Hung Chen of the University of Central Florida, Orlando, USA, Professor Rüdiger Bormann of the Hamburg-Harburg Technical University, Hamburg, Germany, and Dr. S.J. Hong of Kongju National University, Kongju, South Korea. C.S. is also thankful to the experimental input from his graduate students—Pushkar Katiyar, Balaji Prabhu, Satyajeet Sharma, Devender Singh, and UMR Seelam, all from the University of Central Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Suryanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suryanarayana, C., Klassen, T. & Ivanov, E. Synthesis of nanocomposites and amorphous alloys by mechanical alloying. J Mater Sci 46, 6301–6315 (2011). https://doi.org/10.1007/s10853-011-5287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5287-0

Keywords

Navigation