Journal of Materials Science

, Volume 46, Issue 10, pp 3523–3536 | Cite as

Se and Te-modified titania for photocatalytic applications

  • Václav Štengl
  • Snejana Bakardjieva
  • Jana Bludská
Article

Abstract

Nanosized Se4+ and Te4+, respectively, doped titania was prepared by homogeneous hydrolysis of titanium oxo-sulfate with urea in aqueous solutions in the presence of amorphous selenium and tellurium. The prepared samples were annealing at temperature 200 and 400 °C. The structure of prepared samples was characterized by X-ray powder diffraction (XRD), selected area electron diffraction (SAED), surface area (BET), and porosity determination (BJH). The morphology and microstructure characteristics were obtained by scanning electron microscopy (SEM) and high-resolution electron microscopy (HRTEM). The method of UV/Vis diffuse reflectance spectroscopy was employed to estimate band-gap energies of the Se and Te-doped titania. The photocatalytic activity of the prepared samples was assessed by the photocatalytic decomposition of Orange II dye in an aqueous slurry during irradiation at 365 and 400 nm wavelength. The best photocatalytic activity in UV and visible area exhibit the Se and Te-doped titania samples labeled TiSe3 (~11.5 wt% Se) and TiTe3 (~8.0% Te), respectively.

References

  1. 1.
    Livraghi S, Paganini MC, Giamello E, Selloni A, Di Valentin C, Pacchioni G (2006) J Am Chem Soc 128:15666CrossRefGoogle Scholar
  2. 2.
    Wang, Zhang Q, Yin S, Sato T, Saito F (2006) J Phys Chem Solids 68:189CrossRefGoogle Scholar
  3. 3.
    Stengl V, Houskova V, Bakardjieva S, Murafa N (2010) Appl Mater Interfaces 2:575CrossRefGoogle Scholar
  4. 4.
    Tojo T, Tachikawa M, Fujitsuka T, Majima J (2008) Phys Chem C 112:14948CrossRefGoogle Scholar
  5. 5.
    Todorova N, Giannakopoulou T, Romanos G, Vaimakis T, Yu J, Trapalis C (2008) Int J Photoenergy 2008:1CrossRefGoogle Scholar
  6. 6.
    Cui Y, Du H, Wen L (2008) J Mater Sci Technol 24:675CrossRefGoogle Scholar
  7. 7.
    Hodgson SNB, Weng L (2002) J Mater Sci 37:3059CrossRefGoogle Scholar
  8. 8.
    Phillips (2007) APS March meeting, American Physical Society, March 5–9, 2007Google Scholar
  9. 9.
    Wei W, Sheng-yi Z, Wen-zhi C, Yong-long Z, Yu-peng T (2008) Chem Res (1). doi:CNKI:SUN:HXYA.0.2008-01-002
  10. 10.
    Zhang S, Chen X, Tian Y, Jin B, Yang J (2007) J Cryst Growth 304:42CrossRefGoogle Scholar
  11. 11.
    Nguyen VNH, Amal R, Beydoun D (2006) J Photochem Photobiol A: Chem 179:57CrossRefGoogle Scholar
  12. 12.
    JCPDS PDF-2 release 2001, ICDD Newtown Square, PA, USA (2001)Google Scholar
  13. 13.
    ICSD Database FIZ Karlsruhe, Germany (2008)Google Scholar
  14. 14.
    Brunauer, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  15. 15.
    Barret EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  16. 16.
    Orel ZC, Gunde MK, Orel B (1997) Prog Org Coat 30:59CrossRefGoogle Scholar
  17. 17.
    Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann J (2002) Appl Catal B: Environ 39:75CrossRefGoogle Scholar
  18. 18.
    Monteagudo JM, Durán A (2006) Chemosphere 65:1242CrossRefGoogle Scholar
  19. 19.
    Stengl V, Housková V, Bakardjieva S, Murafa N, Havlin V (2008) Phys Chem C 112:19979CrossRefGoogle Scholar
  20. 20.
    Bhattacharyya A, Kawi S, Ray MB (2004) Catal Today 98:431CrossRefGoogle Scholar
  21. 21.
    Kunjomana AG, Chandrasekharan KA (2008) Cryst Res Technol 43(6):594CrossRefGoogle Scholar
  22. 22.
    Pullar RC, Penn SJ, Wang X, Reaney IM, Alford NMcN (2009) J Eur Ceram Soc 29:419CrossRefGoogle Scholar
  23. 23.
    De Boer JH (1958) In: Everett DH, Stone FS (eds) The structure and properties of porous materials. Butterworths, London, p 68Google Scholar
  24. 24.
    Liu F, Ding P, Yang X, Li J (2009) Nucl Instrum Method Phys Res B 267:3104CrossRefGoogle Scholar
  25. 25.
    Liu ZL, Cui ZL, Zhang ZK (2005) Mater Charact 54:123CrossRefGoogle Scholar
  26. 26.
    Colón G, Hidalgo MC, Navío JA, Pulido Melián E, González Díaz O, Doña JM (2008) Environmental 78:176Google Scholar
  27. 27.
    Christy AA, Kvalheim OM, Velapoldi RA (1995) Vib Spectrosc 9:19CrossRefGoogle Scholar
  28. 28.
    Reddy KM, Manorama SV, Reddy AR (2002) Mater Chem Phys 78:239CrossRefGoogle Scholar
  29. 29.
    Bhatkhande DS, Pangarkar VG, Beenackers AA (2001) J Chem Technol Biotechnol 77:102CrossRefGoogle Scholar
  30. 30.
    Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Nanotechnology 19:1CrossRefGoogle Scholar
  31. 31.
    Sanchez E, Lopez T (1995) Mater Lett 25:271CrossRefGoogle Scholar
  32. 32.
    Chou, Yang S, Wang Y (2003) Mater Chem Phys 78:666CrossRefGoogle Scholar
  33. 33.
    Chitralekha J, Gopal ESR, Chattopadhyay K (1997) J Mater Sci 32:2177. doi:10.1023/A:1018547510995 CrossRefGoogle Scholar
  34. 34.
    Zhao W, Shi W, Wang D (2004) Chemosphere 57:1189CrossRefGoogle Scholar
  35. 35.
    Demirev A, Nenov V (2005) Sci Eng 27:475Google Scholar
  36. 36.
    Stylidi M, Kondarides DI, Verykios XE (2004) Appl Catal B 47(3):189CrossRefGoogle Scholar
  37. 37.
    Nath S, Ghosh SK, Panigahi S, Thundat T, Pal T (2004) Langmuir 20:7880CrossRefGoogle Scholar
  38. 38.
    de Tacconi NR, Chenthamarakshan CR, Rajeshwar K, Tacconi EJ (2005) J Phys Chem B 109:11953CrossRefGoogle Scholar
  39. 39.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Václav Štengl
    • 1
  • Snejana Bakardjieva
    • 1
  • Jana Bludská
    • 1
  1. 1.Institute of Inorganic Chemistry AS CR v.v.i.ŘežCzech Republic

Personalised recommendations