Skip to main content
Log in

The effect of sintering temperature on magnetic and dielectric properties of Ho3Fe5O12 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ho3Fe5O12 ceramics were fabricated by the solid-state reaction method. The results revealed an increase of the grain size, dielectric constant, and dielectric loss, while a decrease of the remnant magnetization and coercive field with increasing sintering temperature. A dielectric relaxation behavior was observed, which might be associated with the charge carrier hopping between Fe2+ and Fe3+. A colecole fitting to loss peaks revealed a dependence of the activation energy and the broaden factor on the relative density of the samples. Furthermore, at appropriate frequencies, the 1250 °C-sintered samples showed high dielectric constant, low dispassion, and good temperature stability around room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Larsen PK, Metselaar R (1976) Phys Rev B 14:2520

    Article  CAS  Google Scholar 

  2. Kidoh H, Morimoto A, Shimizu T (2007) Appl Phys Lett 59:237

    Article  Google Scholar 

  3. Legg GJ, Lanchester PC (1980) J Phys C 13:6547

    Article  CAS  Google Scholar 

  4. Takano S, Kita E, Tasaki A, Furukawa K, Kohn K, Siratori K, Kimura S (1989) Ferroelectrics 96:251

    Article  CAS  Google Scholar 

  5. Larsen PK, Metselaar R (1973) Phys Rev B 8:2016

    Article  CAS  Google Scholar 

  6. Fechine PBA, Pereira FMM, Santos MRP, Fihiho FP, de Menezes AS, de Oliveira RS, Gòes JC, Cardoso LP, Sombra ASB (2009) J Phys Chem Solids 70:804

    Article  CAS  Google Scholar 

  7. Yamasaki Y, Kohara Y, TokuraPhys Y (2009) Phys Rev B 80:140412

    Article  Google Scholar 

  8. Jawahar K, Choudhary RNP (2007) Solid State Commun 142:449

    Article  CAS  Google Scholar 

  9. Wu XB, Wang XF, Liu YF, Cai W, Peng S, Huang FZ, Lu XM, Zhu JS (2009) Appl Phys Lett 95:182903

    Article  Google Scholar 

  10. Wu YJ, Gao Y, Chen XM (2007) Appl Phys Lett 91:092912

    Article  Google Scholar 

  11. Guillot M, Marchand A (1982) J Appl Phys 53:2719

    Article  CAS  Google Scholar 

  12. Ostoréro J, Guillot M (1997) J Appl Phys 81:4797

    Article  Google Scholar 

  13. Goodshaw HJ, Forrester JS, Suang GJ, Kisi EH (2007) J Mate Sci 42:337. doi:10.1007/s10853-006-1031-6

    Article  CAS  Google Scholar 

  14. Thongbai P, Yamwong T, Maensiri S (2008) J Appl Phys 104:074109

    Article  Google Scholar 

  15. Ahmed MA, Ateia E, El-Dek SI, Salem FM (2003) J Mater Sci 38:1087. doi:10.1023/A:1022314301113

    Article  CAS  Google Scholar 

  16. Popa PD, Rezlescu E, Doroftei C, Rezlescu N (2005) J Optoelectron Adv Mater 7:1553

    CAS  Google Scholar 

  17. Hussain S, Maqsood A (2007) J Magn Magn Mater 316:73

    Article  CAS  Google Scholar 

  18. Lee JW, Cho YS, Amarakoon VRW (1999) J Appl Phys 85:5696

    Article  CAS  Google Scholar 

  19. Tǒpfer J, Schwarzer S, Senz S, Hesse D (2005) J Eur Ceram Soc 25:1681

    Article  Google Scholar 

  20. Costantini JM, Salvetat JP, Brisard F (1997) J Appl Phys 82:5063

    Article  CAS  Google Scholar 

  21. Cole KS, Cole RH (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  22. Li W, Chen K, Yao YY, Zhu JS, Wang YN (2004) Appl Phys Lett 85:4717

    Article  CAS  Google Scholar 

  23. Wang XF, Lu XM, Zhang C, Wu XB, Cai W, Peng S, Bo HF, Kan Y, Huang FZ, Zhu JS (2010) J Appl Phys 107:114101

    Article  Google Scholar 

  24. Ngai KL, Wang YN, Magalass LB (1994) J Alloys Compd 212:327

    Article  Google Scholar 

  25. Homes CC, vogt T, Shapiro SM, Wakimoto S, Ramirez AP (2001) Science 293:673

    Article  CAS  Google Scholar 

  26. Wang CM, Lin SY, Kao KS, Chen YC, Wang SC (2010) J Alloys Compd 491:423

    Article  CAS  Google Scholar 

  27. Kim BG, Cho SM, Kim TY, Jang HM (2001) Phys Rev Lett 86:3404

    Article  CAS  Google Scholar 

  28. Fujii I, Ugorek M, Trolier-McKinstry S (2010) J Appl Phys 107:104116

    Article  Google Scholar 

  29. Cross LE (1987) Ferroelectrics 76:241

    CAS  Google Scholar 

  30. Sarkar S, Jana PK, Chaudhui BK, Sakata H (2006) Appl Phys Lett 89:212905

    Article  Google Scholar 

  31. Thongbai P, Yamwong T, Maensiri S (2008) Solid State Commun 147:385

    Article  CAS  Google Scholar 

  32. Deng GC, Muralt P (2010) Phys Rev B 81:224111

    Article  Google Scholar 

  33. Shri-Prakash B, Varma KBR (2007) J Mater Sci 42:7467. doi:10.1007/s10853-006-1251-9

    Article  Google Scholar 

  34. Wu J, Nan CW, Lin Y, Deng Y (2002) Phys Rev Lett 89:217601

    Article  Google Scholar 

  35. Hsiao YJ, Chang YS, Fang TH, Chai YL, Chung CY, Chang YH (2007) J Phys D 40:863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation (no. 50672034 and 50972056), and 973 Project of MOST (Grant no. 2009CB623303 and 2009CB929501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomei Lu or Jinsong Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, J., Lu, X., Zhang, C. et al. The effect of sintering temperature on magnetic and dielectric properties of Ho3Fe5O12 ceramics. J Mater Sci 46, 3488–3492 (2011). https://doi.org/10.1007/s10853-011-5254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5254-9

Keywords

Navigation