Skip to main content
Log in

Phonon dispersion and specific heat in trans 1,4, poly (2,3-dimethylbutadiene)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A comprehensive study of the normal modes and their dispersion for trans 1,4-poly (2,3 dimethylbutadiene) is described in the reduced zone scheme using Wilson’s GF matrix method as modified by Higg’s for an infinite polymeric chain. Urey Bradley force field is obtained by least square fitting of the observed IR and Raman bands. Optically active frequencies corresponding to the zone center and zone boundary are identified and discussed. Some of the characteristic features of dispersion curves are repulsion accompanied by exchange of character and Von Hove type singularities. The evaluation of normal modes and their dispersion has been taken to logical conclusion by calculating the heat capacity as a function of temperature. Specific heat has been obtained from dispersion curves via density of states in the range 10–400 K using Debye’s relation. The predictive values of specific heat show a typical variation for an one dimensional polymeric system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hu S, Smith KM, Spiro TG (1996) J Am Chem Soc 118:12638

    Article  CAS  Google Scholar 

  2. Dong S, Spiro TG (1998) J Am Chem Soc 120:10434

    Article  CAS  Google Scholar 

  3. Applications of fourier transform Raman spectroscopy: Hendra PJ (guest editor) 1990. University of Southampton, U.K. 4–6 April 1990. Special edition. Spectrochim Acta 46A(2):121–337

  4. Painter PC, Coleman MM, Koenig JL (1982) The theory of vibrational spectroscopy and its applications to polymeric material. Wiley, New York

    Google Scholar 

  5. Gupta A, Choudhary N, Bee S, Tandon P, Gupta VD (2010) Polym Sci Ser A 52:1057

    Article  Google Scholar 

  6. Kumar N, Shukla SK, Tandon P, Gupta VD (2009) J Polym Sci Part B Polym Phys 47:2353

    Article  CAS  Google Scholar 

  7. Singh M, Kumar A, Kumar N, Tandon P, Gupta VD (2009) Chem Chem Tech 3:7

    Google Scholar 

  8. Chaturvedi D, Mishra S, Tandon P, Gupta VD, Siesler WH (2009) Polym Engg Sci 49:850

    Article  CAS  Google Scholar 

  9. Brydson JA (1978) Rubber chemistry. Applied Science Publishers, London, p 4

    Google Scholar 

  10. Long LC (2001) Rubber Chem Technol 74:493

    Article  CAS  Google Scholar 

  11. Chatani Y, Nakatani S (1972) Macromolecules 5:597

    Article  CAS  Google Scholar 

  12. Miyata M, Morioka K, Takemoto K (1977) J Polym Sci Polym Chem Ed 15:2987

    Article  CAS  Google Scholar 

  13. Ichikawa T, Nakao O, Suzuki T, Okazaki T, Ohta N (1986) Int J Radiat Appl Instrum Part C Radiat Phys Chem 28:295

    Article  CAS  Google Scholar 

  14. Ichikawa T, Nakao O, Ohta N (1987) Int J Radiat Appl Instrum Part C Radiat Phys Chem 29:435

    Article  CAS  Google Scholar 

  15. Cataldo F, Ragni P, Ursini O, Angelini G (2008) Radiat Phys chem 77:941

    Article  CAS  Google Scholar 

  16. Petcavich RJ, Coleman MM (1980) J Polym Sci 18:2097

    CAS  Google Scholar 

  17. Urey HC, Bradley HC (1931) Phys Rev 38:1969

    Article  CAS  Google Scholar 

  18. Wilson EB, Decius JC, Cross PC (1980) Molecular vibrations: the theory of infrared and Raman vibrational spectra. Dover Publications, New York

    Google Scholar 

  19. Higgs PW (1953) Proc R Soc Lond A 220:472

    Article  CAS  Google Scholar 

  20. Mannfors B, Palmo K, Krimm S (2000) J Mol Struct 556:1

    Article  CAS  Google Scholar 

  21. Pathak A, Saxena V, Tandon P, Gupta VD (2006) Polymer 47:5154

    Article  CAS  Google Scholar 

  22. Kings WT, Mills IM, Crawford BL (1957) J Chem Phys 27:475

    Google Scholar 

  23. Petcavich RJ, Coleman MM (1980) J Macromol Sci Phys B18:47

    CAS  Google Scholar 

  24. Pande S, Kumar A, Tandon P, Gupta VD (2001) Vib Spectrosc 26:161

    Article  CAS  Google Scholar 

  25. Saxena V, Mishra RM, Tandon P, Gupta VD (2005) Polymer 46:7386

    Article  CAS  Google Scholar 

  26. Sharma P, Tandon P, Gupta VD (2000) Eur Polym J 36:2629

    Article  CAS  Google Scholar 

  27. Callaway J (1974) Quantum theory of solids. Academic Press, New York and London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Bee, S., Agarwal, P. et al. Phonon dispersion and specific heat in trans 1,4, poly (2,3-dimethylbutadiene). J Mater Sci 46, 3452–3463 (2011). https://doi.org/10.1007/s10853-011-5250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5250-0

Keywords

Navigation