Skip to main content
Log in

Optical and dielectric properties of nitrophenolate based nonlinear optical crystal

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A semi-organic nonlinear optical (NLO) material, lithium-p-nitrophenolate trihydrate (LPNP) was synthesized. Single crystals of dimensions 20 × 7 × 3 mm3 were harvested following the solvent evaporation technique. The functional groups present in the compound were identified from FT-IR and FT-Raman spectral analyses, and its molecular structure was confirmed. Identification of the compound was accomplished by X-ray diffraction technique (powder and single crystal XRD). The unit-cell dimensions and the morphology of the grown crystals were identified from single crystal XRD measurements. The thermal transport properties, thermal effusivity (e), thermal diffusivity (α), thermal conductivity (k) and heat capacity (C p) were measured by the photopyroelectric technique at room temperature. Dielectric constant and dielectric loss were also measured as a function of frequency between 42 Hz and 5 MHz, and temperature between 32 and 100 °C. From optical transmittance measurements, the direct optical band gap of the LPNP crystal was estimated to be 2.47 eV. Laser damage threshold is 60.91 GW cm−2. Powder second harmonic generation (SHG) measurement was carried out using a modified Kurtz–Perry technique. Third order nonlinear response was studied using Z-scan technique with a He–Ne laser (632.8 nm, 35 mW). The magnitude and the sign of the nonlinear absorption and nonlinear refraction are derived from a transmittance curve. The NLO parameters Intensity dependent refractive index n 2, nonlinear absorption coefficient β and third order susceptibility χ(3) were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dehu C, Meyers F, Bredas JL (1993) J Am Chem Soc 115:6198

    Article  CAS  Google Scholar 

  2. Rosker MJ, Marcy HO (1997) Novel optical materials and applications. Wiley, New York

    Google Scholar 

  3. Milton Boaz B, Mary Navis Priya S, Mary Linet J, Martin Deva Prasath P, Jerome Das S (2007) Opt Mater 29:827

    Article  Google Scholar 

  4. Brahadeeswaran S, Bhat HL, Kini NS, Umarji AM, Balaya P, Goyal PS (2000) J Appl Phys 88:5935

    Article  CAS  Google Scholar 

  5. Dhanuskodi S, Pricilla Jeyakumari A, Manivannan S (2005) J Cryst Growth 282:72

    Article  CAS  Google Scholar 

  6. Angeli Mary PA, Dhanuskodi S (2001) Spectrochim Acta A 57:2345

    Article  CAS  Google Scholar 

  7. Ramajothi J, Dhanuskodi S (2003) Cryst Res Technol 38:986

    Article  CAS  Google Scholar 

  8. Minemoto H, Sonoda N, Miki K (1992) Acta Cryst C48:737

    CAS  Google Scholar 

  9. Brahadeeswaran S, Venkatraman V, Sherwood JN, Bhat HL (1998) J Mater Chem 8:613

    Article  CAS  Google Scholar 

  10. Milton Boaz B, Rajesh AL, Xavier Jesu Raja S, Jerome Das S (2004) J Cryst Growth 262:531

    Article  Google Scholar 

  11. Milton Boaz B, Santhana Raman P, Xavier Jesu Raja S, Jerome Das S (2005) Mater Chem Phys 93:187

    Article  Google Scholar 

  12. Dinakaran S, Jerome Das S (2008) J Cryst Growth 310:410

    Article  CAS  Google Scholar 

  13. Preethy Menon C, Philip J (2000) Meas Sci Technol 11:1744

    Article  Google Scholar 

  14. Anie Roshan S, Joseph C, Ittyachan MA (2001) Mater Lett 49:299

    Article  Google Scholar 

  15. Kurtz SK, Perry TT (1968) J Appl Phys 39:3798

    Article  CAS  Google Scholar 

  16. Sheik-Bahae M, Said AA, Wei J-H, Hagan DJ, Vanstryland EW (1990) IEEE J Quantum Electron 26:760

    Article  CAS  Google Scholar 

  17. Robert Silverstein M, Francis Webster X (2003) Spectroscopic identification of organic compounds, 6th edn. Wiley, Asia

    Google Scholar 

  18. Arora SK, Patil V, Amin B, Kothari A (2004) Bull Mater Sci 27:141

    Article  CAS  Google Scholar 

  19. Miller RC (1964) Appl Phys Lett 5:17

    Article  CAS  Google Scholar 

  20. Hinano S, Kim PC, Orihara H, Umeda, Ishibasi Y (1990) J Mater Sci 25:2800. doi:10.1007/BF00584883

    Article  Google Scholar 

  21. Manivannan S, Dhanuskodi S, Tiwari SK, Philip J (2008) Appl Phys B 90:489

    Article  CAS  Google Scholar 

  22. Periasamy BK, Jebas RS, Gopalakrishnan N, Balasubramanian T (2007) Mater Lett 61:4246

    Article  Google Scholar 

  23. Yakuphanoglu F, Cukurovali A, Yilmaz I (2004) Physica B 351:53

    Article  CAS  Google Scholar 

  24. Mohammed Ali Q, Palanisamy PK (2005) Optik 116:515

    Google Scholar 

  25. Sheik-Bahae M, Hutchings DC, Hagan DJ, Vanstryland EW (1991) IEEE J Quantum Electron 27:1296

    Article  CAS  Google Scholar 

  26. Sabari Girisun TC, Dhanuskodi S (2009) Cryst Res Technol 44:1

    Article  Google Scholar 

  27. Geethakrishnan T, Palanisamy PK (2007) Opt Commun 270:424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Information and Communication, Korea, under the ITPSIP (IT Foreign Specialist Inviting Program) supervised by the IIT A (Institute of Information Technology Advancement).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhanuskodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanuskodi, S., Philominal, A., Philip, J. et al. Optical and dielectric properties of nitrophenolate based nonlinear optical crystal. J Mater Sci 46, 3169–3175 (2011). https://doi.org/10.1007/s10853-010-5200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5200-2

Keywords

Navigation