Skip to main content
Log in

Study of isothermal δ′ (Al3Li) precipitation in an Al–Li alloy by thermoelectric power

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We study the isothermal δ′ (Al3Li) precipitation kinetics in an Al–2.3 wt% Li–0.1 wt% Zr alloy by means of the measurement of the thermoelectric power (TEP) in the temperature range between 120 and 180 °C. We obtain that the nucleation-and-growth stage of δ′ precipitation reaction can be well described by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) relation. This result suggests that the JMAK relation provides a good description of the impingement effect of growing δ′ precipitates where interactions mainly occur on neighbouring precipitates. The activation energy associated to the nucleation-and-growth stage calculated from the JMAK fit is 52 ± 1 kJ/mol. The small activation energy obtained is ascribed to the presence of a large amount of excess vacancies quenched-in from the ageing temperature, inherent to the experimental conditions of the measurement of the TEP, reducing the activation energy to a value close to the vacancy migration energy in aluminium (45–65 kJ/mol). The Avrami exponent of this stage ranges between 1.5 and 1.65. These kinetic parameters indicate that δ′ particles grow via a three-dimensional vacancy migration-controlled mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin JW (1988) Annu Rev Mater Res 18:101

    Article  CAS  Google Scholar 

  2. Williams JC, Starke EA (2003) Acta Mater 51:5775

    Article  CAS  Google Scholar 

  3. Csontos AA, Starke EA (2005) Int J Plast 21:1097

    Article  CAS  Google Scholar 

  4. Nembach E (2000) Prog Mater Sci 45:275

    Article  CAS  Google Scholar 

  5. Satya Prasad K, Mukhopadhyay AK, Gokhale AA, Banerjee D, Goel DB (1994) Scripta Metall 30:1299

    Article  Google Scholar 

  6. Warner T (2006) Mater Sci Forum 519–521:1271

    Article  Google Scholar 

  7. Lequeu P, Smith KP, Daniélou A (2010) J Mater Eng Perform 19:841

    Article  CAS  Google Scholar 

  8. Steglich D, Wafai H, Besson J (2010) Eng Fract Mech 77:3501

    Article  Google Scholar 

  9. Noble B, Bray SE (1999) Philos Mag A 79:859

    Article  CAS  Google Scholar 

  10. Poduri R, Chen LQ (1998) Acta Mater 46:3915

    Article  CAS  Google Scholar 

  11. Tsao CS, Chen CY, Kuo TY, Lin TL, Yu MS (2003) Mater Sci Eng A 363:228

    Article  Google Scholar 

  12. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  13. Wagner C (1961) Z Elektrochem 65:581

    CAS  Google Scholar 

  14. Noble B, Trowsdale AJ (1995) Scripta Metall Mater 33:33

    Article  CAS  Google Scholar 

  15. Starink MJ, Gregson PJ (1996) Mater Sci Eng A 211:54

    Article  Google Scholar 

  16. Kissinger HE (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  17. Kolmogorov AN (1937) Ivz Akad Nauk SSSR, Ser Mat 3:355

    Google Scholar 

  18. Austin JB, Rickett RL (1939) Trans Am Inst Met Eng 135:396

    Google Scholar 

  19. Johnson WA, Mehl RF (1939) Trans Am Inst Met Eng 135:416

    Google Scholar 

  20. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  21. Avrami M (1940) J Chem Phys 8:212

    Article  CAS  Google Scholar 

  22. Christian JW (1981) The theory of transformations in metals and alloys. Part I: equilibium and general kinetics theory, vol 1. Pergamon Press, Oxford, UK

    Google Scholar 

  23. Starink MJ (1997) J Mater Sci 32:4061. doi:10.1023/A:1018649823542

    Article  CAS  Google Scholar 

  24. Starink MJ, Zahra AM (1999) J Mater Sci 34:1117. doi:10.1023/A:1004516600251

    Article  CAS  Google Scholar 

  25. Pelletier JM, Borrelly R (1982) Mater Sci Eng 55:191

    Article  CAS  Google Scholar 

  26. Massardier V, Epicier T, Merle P (2000) Acta Mater 48:2911

    Article  CAS  Google Scholar 

  27. Pelletier JM, Vigier G, Merlin J, Merle P, Fouquet R, Borrelly R (1984) Acta Metall 32:1069

    Article  CAS  Google Scholar 

  28. Raynaud GM, Guyot P (1988) Acta Metall 36:143

    Article  CAS  Google Scholar 

  29. Woldt E (1992) J Phys Chem Solids 53:521

    Article  Google Scholar 

  30. Starink MJ (1997) J Mater Sci 32:6505. doi:10.1023/A:1018655026036

    Article  CAS  Google Scholar 

  31. Ruitenberg G, Woldt E, Petford-Long AK (2001) Thermochim Acta 378:97

    Article  CAS  Google Scholar 

  32. Lee ES, Kim YG (1990) Acta Metall 38:1669

    Article  CAS  Google Scholar 

  33. Noble B, Thompson GE (1971) J Met Sci 5:114

    Article  CAS  Google Scholar 

  34. Noble B, Harris SJ, Dinsdale K (1997) Acta Mater 45:2069

    Article  CAS  Google Scholar 

  35. Noble B, Bray SE (1998) Acta Metall 46:6163

    CAS  Google Scholar 

  36. Gayle FW, Sande JBV (1984) Scripta Metall 18:473

    Article  CAS  Google Scholar 

  37. Vecchio KS, Williams DB (1987) Acta Metall 35:2959

    Article  CAS  Google Scholar 

  38. Sun NX, Liu XD, Lu K (1996) Scripta Mater 34:1201

    Article  CAS  Google Scholar 

  39. Weinberg MC, Birnie DP, Shneidman VA (1997) J Non-Cryst Solids 219:89

    Article  CAS  Google Scholar 

  40. Todinov MT (2000) Acta Mater 48:4217

    Article  CAS  Google Scholar 

  41. Starink MJ (2001) J Mater Sci 36:4433. doi:10.1023/A:1017974517877

    Article  CAS  Google Scholar 

  42. Costas LP, Marshall RP (1962) Trans Metall Soc AIME 224:970

    Google Scholar 

  43. Ceresara S, Giarda A, Sanchez A (1977) Philos Mag 35:97

    Article  CAS  Google Scholar 

  44. Flower HM, Gregson PJ (1987) Mater Sci Technol 3:81

    CAS  Google Scholar 

  45. Rooyen MV, Mittemeijer EJ (1989) Metall Trans A 20:1207

    Article  Google Scholar 

  46. Noble B, Trowsdale AJ (1995) Philos Mag A 71(6):1345

    Article  CAS  Google Scholar 

  47. Starink MJ, Wang P, Sinclair I, Gregson PJ (1999) Acta Mater 47:3841

    Article  CAS  Google Scholar 

  48. Starink MJ, Zahra AM (1998) Acta Mater 46:3381

    Article  CAS  Google Scholar 

  49. Wang KG, Glicksman ME, Rajan K (2005) Comput Mater Sci 34:235

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor J.M. San Juan for the provision of laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gutiérrez-Urrutia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Urrutia, I. Study of isothermal δ′ (Al3Li) precipitation in an Al–Li alloy by thermoelectric power. J Mater Sci 46, 3144–3150 (2011). https://doi.org/10.1007/s10853-010-5195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5195-8

Keywords

Navigation