Skip to main content
Log in

Compositional characterization of nickel silicides by HAADF-STEM imaging

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A methodology for the quantitative compositional characterization of nickel silicides by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imaging is presented. HAADF-STEM images of a set of nickel silicide reference samples Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 are taken at identical experimental conditions. The correlation between sample thickness and HAADF-STEM intensity is discussed. In order to quantify the relationship between the experimental Z-contrast intensities and the composition of the analysed layers, the ratio of the HAADF-STEM intensity to the sample thickness or to the intensity of the silicon substrate is determined for each nickel silicide reference sample. Diffraction contrast is still detected on the HAADF-STEM images, even though the detector is set at the largest possible detection angle. The influence on the quantification results of intensity fluctuations caused by diffraction contrast and channelling is examined. The methodology is applied to FUSI gate devices and to horizontal TFET devices with different nickel silicides formed on source, gate and drain. It is shown that, if the elements which are present are known, this methodology allows a fast quantitative 2-dimensional compositional analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maex K, Van Rossum M (1995) Properties of metal silicides. INSPEC, London

    Google Scholar 

  2. Maex K (1993) Mater Sci Eng R11:53

    CAS  Google Scholar 

  3. Kittl JA, Lauwers A, van Dal MJH, Yu H, Veloso A, Hoffmann T, Pawlak MA, Demeurisse C, Kubicek S, Niwa M, Vrancken C, Absil P, Biesemans S (2006) ECS Trans 3:233

    Article  CAS  Google Scholar 

  4. Kittl JA, O’Sullivan BJ, Kaushik VS, Lauwers A, Pawlak MA, Hoffmann T, Demeurisse C, Vrancken C, Veloso A, Absil P, Biesemans S (2007) Appl Phys Lett 90:032103

    Article  Google Scholar 

  5. Gambino JP, Colgan EG (1998) Mater Chem Phys 52:99

    Article  CAS  Google Scholar 

  6. Lavoie C, d`Heurle FM, Detavernier C, Cabral C (2003) Microelectron Eng 70:144

    Article  CAS  Google Scholar 

  7. Shiojiri M, Yamazaki T (2003) Jeol News 38(2):54

    Google Scholar 

  8. Watanabe K, Yamazaki T, Kikuchi Y, Kotaka Y, Kawasaki M, Hashimoto I, Shiojiri M (2001) Phys Rev B 63:085316

    Article  Google Scholar 

  9. Verleysen E, Bender H, Schryvers D, Vandervorst W (2010) J Phys Conf Ser 209:012057

    Article  Google Scholar 

  10. Verleysen E, Bender H, Richard O, Schryvers D, Vandervorst W (2010) J Microsc 240:75. doi:10.1111/j.1365-2818.2010.03391.x

    Article  CAS  Google Scholar 

  11. Pennycook SJ, Nellist PD (1999) Impact of electron microscopy on materials research. Kluwer Academic, Dordrecht

  12. Pennycook SJ, Jesson DE (1991) Ultramicroscopy 37:14

    Article  Google Scholar 

  13. Bonney LA (1990) In: Proceedings of the XIIth international congress for electron microscopy. San Francisco Press, San Francisco, p 74

  14. Egerton RF (1986) Electron energy loss spectroscopy in the electron microscope. Plenum Press, New York

    Google Scholar 

  15. Meltzman H, Kauffmann Y, Thangadurai P, Drozdov M, Baram M, Brandon D, Kaplan WD (2009) J Microsc 236:165

    Article  CAS  Google Scholar 

  16. Leonelli D, Vandooren A, Rooyackers R, Verhulst AS, De Gendt S, Heyns MM, Groeseneken G (2009) In: Extended abstracts solid state devices and materials conference, p 767

  17. Leonelli D, Vandooren A, Rooyackers R, Verhulst AS, De Gendt S, Heyns MM, Groeseneken G (2010) Jpn J Appl Phys 49:04DC10

    Article  Google Scholar 

  18. Verhulst AS, Vandenberghe WG, Leonelli D, Rooyackers R, Vandooren A, De Gendt S, Heyns MM, Groeseneken G (2009) ECS Trans 25:455

    Article  CAS  Google Scholar 

  19. Verhulst AS, Sorée B, Leonelli D, Vandenberghe WG, Groeseneken G (2010) J Appl Phys 107:024518

    Article  Google Scholar 

  20. Cliff G, Lorimer GW (1975) J Microsc 103:203

    Google Scholar 

  21. Williams DB, Carter CB (1996) Transmission electron microscopy. Plenum Press, New York

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daniele Leonelli (Imec, Leuven) for providing the TFET structures, Lars-Ake Ragnarsson (Imec, Leuven) for the FUSI structures, Jo Verbeeck (EMAT, Universiteit Antwerpen) for HAADF-STEM measurements with the JEOL 3000F microscope, Paola Favia (Imec, Leuven) for discussion on the STEM analysis and DM software, and Patricia Van Marcke (Imec, Leuven) for sample preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Verleysen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verleysen, E., Bender, H., Richard, O. et al. Compositional characterization of nickel silicides by HAADF-STEM imaging. J Mater Sci 46, 2001–2008 (2011). https://doi.org/10.1007/s10853-010-5191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5191-z

Keywords

Navigation